
Hitachi Ops Center Analyzer Detail View

Query Language User Guide
This document describes how to use Ops Center Analyzer detail view Query language.

MK-99ANA006-01 
May 2020



2 Hitachi Ops Center Analyzer detail view Query Language User Guide  

 

© 2016, 2020 Hitachi, Ltd. All rights reserved. 
 
No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including 
copying and recording, or stored in a database or retrieval system for commercial purposes without the express written 
permission of Hitachi, Ltd., or Hitachi Vantara Corporation (collectively “Hitachi”). Licensee may make copies of the Materials 
provided that any such copy is: (i) created as an essential step in utilization of the Software as licensed and is used in no other 
manner; or (ii) used for archival purposes. Licensee may not make any other copies of the Materials. “Materials” mean text, 
data, photographs, graphics, audio, video and documents. 
 
Hitachi reserves the right to make changes to this Material at any time without notice and assumes no responsibility for its use. 
The Materials contain the most current information available at the time of publication. 
 
Some of the features described in the Materials might not be currently available. Refer to the most recent product 
announcement for information about feature and product availability, or contact Hitachi Vantara Corporation at  
https://support.hitachivantara.com/en_us/contactus.  
 
Notice: Hitachi products and services can be ordered only under the terms and conditions of the applicable Hitachi 
agreements. The use of Hitachi products is governed by the terms of your agreements with Hitachi Vantara Corporation. 
 
By using this software, you agree that you are responsible for: 
1. Acquiring the relevant consents as may be required under local privacy laws or otherwise from authorized employees and     
other individuals; and 
2. Verifying that your data continues to be held, retrieved, deleted, or otherwise processed in accordance with relevant laws. 
 
Notice on Export Controls. The technical data and technology inherent in this Document may be subject to U.S. export 
control laws, including the U.S. Export Administration Act and its associated regulations, and may be subject to export or 
import regulations in other countries. Reader agrees to comply strictly with all such regulations and acknowledges that Reader 
has the responsibility to obtain licenses to export, re-export, or import the Document and any Compliant Products. 
 
Hitachi is a registered trademark of Hitachi, Ltd., in the United States and other countries. 
 
AIX, AS/400e, DB2, Domino, DS6000, DS8000, Enterprise Storage Server, eServer, FICON, FlashCopy, IBM, Lotus, MVS, 
OS/390, PowerPC, RS/6000, S/390, System z9, System z10, Tivoli, z/OS, z9, z10, z13, z/VM, and z/VSE are registered 
trademarks or trademarks of International Business Machines Corporation. 
 
Active Directory, ActiveX, Bing, Excel, Hyper-V, Internet Explorer, the Internet Explorer logo, Microsoft, the Microsoft Corporate 
Logo, MS-DOS, Outlook, PowerPoint, SharePoint, Silverlight, SmartScreen, SQL Server, Visual Basic, Visual C++, Visual Studio, 
Windows, the Windows logo, Windows Azure, Windows PowerShell, Windows Server, the Windows start button, and Windows 
Vista are registered trademarks or trademarks of Microsoft Corporation. Microsoft product screen shots are reprinted with 
permission from Microsoft Corporation. 
 
All other trademarks, service marks, and company names in this document or website are properties of their respective 
owners. 
 
EXPORT CONTROLS - Licensee will comply fully with all applicable export laws and regulations of the United States and other 
countries, and Licensee shall not export, or allow the export or re-export of, the Software, API or Materials in violation of any 
such laws or regulations. By downloading or using the Software, API, or Materials, Licensee agrees to the foregoing and 
represents and warrants that Licensee is not located in, under the control of, or a national or resident of any embargoed or 
restricted country. 
   

  

https://support.hitachivantara.com/en_us/contactus


3 Hitachi Ops Center Analyzer detail view Query Language User Guide  

 

Contents 
1 Preface ............................................................................................. 5 

1.1 Product version............................................................................................. 5 

1.2 Intended audience ........................................................................................ 5 

1.3 Accessing product documentation .................................................................. 5 

1.4 Getting help ................................................................................................. 5 

1.5 Comments .................................................................................................... 5 

2 Analyzer detail view query language ................................................... 6 

3 Query language specification .............................................................. 7 

3.1 Terminology ................................................................................................. 7 

3.1.1 Overview ................................................................................................ 8 

3.1.2 Query structure ...................................................................................... 8 

3.1.3 Resource filters....................................................................................... 9 

3.1.4 Attribute filters ....................................................................................... 9 

4 Query language BNF ........................................................................ 20 

4.1 Query statement ......................................................................................... 20 

4.2 Scalar filter ................................................................................................. 20 

4.3 Timeseries filter .......................................................................................... 20 

4.3.1 Timeseries filter expression ................................................................... 21 

4.4 Subsequence filter ...................................................................................... 21 

4.5 Non-terminals ............................................................................................. 21 

4.6 Limitations ................................................................................................. 21 

5 Advanced data processing functions ................................................. 22 

5.1 Query options ............................................................................................. 22 

5.1.1 Query global options ............................................................................. 22 

5.1.2 Query filter options ............................................................................... 23 

5.2 Interval Rollup ............................................................................................ 24 

5.2.1 Syntax ................................................................................................. 25 

5.2.2 Supported operations ............................................................................ 26 



4 Hitachi Ops Center Analyzer detail view Query Language User Guide  

 

5.2.3 Use case 1 ........................................................................................... 26 

5.2.4 Use case 2 ........................................................................................... 31 

5.3 Derived attributes ....................................................................................... 32 

5.3.1 Syntax ................................................................................................. 32 

5.3.2 Supported operations ............................................................................ 34 

5.3.3 Use case .............................................................................................. 34 

5.4 Resource Rollup .......................................................................................... 40 

5.4.1 Syntax ................................................................................................. 41 

5.4.2 Supported operations ............................................................................ 45 

5.4.3 Use case .............................................................................................. 45 

5.5 preProc ...................................................................................................... 48 

5.5.1 Syntax ................................................................................................. 48 

5.5.2 Use case .............................................................................................. 48 

6 External scripts ................................................................................ 50 

6.1 Supported scripting languages ..................................................................... 50 

6.1.1 R ......................................................................................................... 50 

6.1.2 Groovy ................................................................................................. 51 

6.1.3 Python ................................................................................................. 51 

6.2 Script filter ................................................................................................. 51 

6.2.1 Regular external scripts ......................................................................... 53 

6.2.2 Rollup external scripts ........................................................................... 63 

6.2.3 Group external scripts ........................................................................... 70 

7 Advanced features ........................................................................... 80 

7.1 Query Join .................................................................................................. 80 

7.1.1 Syntax ................................................................................................. 80 

7.1.2 Use case .............................................................................................. 82 

7.2 Synthetic attribute ...................................................................................... 83 

7.2.1 Syntax ................................................................................................. 83 

7.2.2 Use case .............................................................................................. 84 

8 Appendix ......................................................................................... 85 



5 Hitachi Ops Center Analyzer detail view Query Language User Guide  

 

 

1 Preface 
This document describes how to use Hitachi Ops Center Analyzer detail view Query language. 

1.1 Product version 
This document revision applies to Hitachi Ops Center Analyzer detail view version 10.2 or later. 

1.2 Intended audience 
This document is intended for Infrastructure Administrators who manage complex data centres. 

1.3 Accessing product documentation 
Product documentation is available on Hitachi Vantara Support Connect: 
https://knowledge.hitachivantara.com/Documents. Check this site for the most current 
documentation, including important updates that may have been made after the release of the 
product. 

1.4 Getting help 
Hitachi Vantara Support Connect is the destination for technical support of products and 
solutions sold by Hitachi Vantara. To contact technical support, log on to Hitachi Vantara 
Support Connect for contact information: https://support.hitachivantara.com/en_us/contact-
us.html.  

Hitachi Vantara Community is a global online community for Hitachi Vantarac customers, 
partners, independent software vendors, employees, and prospects. It is the destination to get 
answers, discover insights, and make connections. Join the conversation today! Go to 
community.hitachivantara.com, register, and complete your profile. 

1.5 Comments 
Please send us your comments on this document to doc.comments@hitachivantara.com. 
Include the document title and number, including the revision level (for example, -07), and refer 
to specific sections and paragraphs whenever possible. All comments become the property of 
Hitachi Vantara Corporation. 

Thank you!  

https://knowledge.hitachivantara.com/Documents
https://knowledge.hitachivantara.com/
https://support.hitachivantara.com/en_us/contact-us.html
https://support.hitachivantara.com/en_us/contact-us.html
https://community.hitachivantara.com/welcome
https://community.hitachivantara.com/welcome


6 Hitachi Ops Center Analyzer detail view Query Language User Guide  

 

2 Analyzer detail view query language 
The Analyzer detail view query language (referred to as MQL in this document) is a regex-based 
terse yet expressive query language used to retrieve and filter data stored in Analyzer detail 
view database. 

MQL allows complex analysis on this data in real-time with constant run-time. 

MQL syntax makes it possible to traverse relations, identify patterns in data, and provides a 
mechanism to establish a correlation.  

MQL query consists of the following parameters: 

• A single line query  
• Start time 
• End time 

You can perform advanced operations like interval rollup, resource rollup etc. using MQL by 
referring to this guide. For example, you can use the interval rollup operation to aggregate data 
from a lower interval to a higher interval. To perform advanced operations using MQL, log on to 
Analyzer detail view, click Reports > Report Builder and then click Create Using MQL option. 

Note: You can also build queries through Query Builder option in the Analyzer detail view UI. 
However, advanced MQL features are not supported in the Query Builder. For more 
information, refer to the Creating custom reports using Query Builder section in the Hitachi Ops 
Center Analyzer Detail View Help.  

 

 

 

 

  



7 Hitachi Ops Center Analyzer detail view Query Language User Guide  

 

3 Query language specification 
3.1 Terminology 

• Resource: An entity for which scalar and timeseries data exists in the Analyzer detail 
view  database. Resources may represent real world entities such as a Host, CPU, 
Storage Volume, Storage System, NIC Card, and Virtual Machine. 

• Attribute: A property that is attached to a resource which provides more information 
about it. Two types of attributes are as follows:  
 Scalar attributes that might not change frequently. For example, host name or 

IP address of a host, size of a storage volume. 
 Timeseries attributes store timeseries numerical data for a resource. For 

example, CPU usage of a host, number of IOPS occurring on a storage volume. 
• Relation: A resource in real world typically does not operate independently. It is either 

dependent on another resource or contains resources within or under itself. For 
example, a VM is dependent on the Host it runs. Vice-versa the Host contains a number 
of VMs which are running on it. Two resources are considered related if one resource 
depends on another resource or one resource contains the other resource. 

• Resource Definition: Defines how the resource is modeled. The definition consists of 
the following: 
 Type: An unique identifier for resource definition within a given dataset. For 

example, LHost can represent a Linux Host, LHostCPU can represent the CPUs in 
a host. 

 Scalar Attributes: IDs of scalar attribute definition for which data can be stored 
in resources of this type, for example, name, ipAddress, capacity. 

 Timeseries Attributes: IDs of timeseries attribute definition for which data can 
be stored in resources of this type, for example, cpuUsage, memUsage, 
readIOPS. 

 Relations: List of resource types which can be related to resource belonging to 
this definition, for example, LHost is related with LHostCPU. 

• Attribute Definition: Defines how the attribute is modeled. The definition consists of 
the following: 
 ID: An unique identifier for attribute definition within a given dataset, for 

example, name, ipAddress, cpuUsage 
 Name: Display name for the attribute definition 
 Type: Attribute definition type. Valid values are scalar and timeseries. 
 Unit: Specifies the unit in which the value is stored, for example, Percent, MBps, 

KBps. 
 

  



8 Hitachi Ops Center Analyzer detail view Query Language User Guide  

 

3.1.1  Overview 

MQL query consists of a series of resource filters separated by the path separator ‘/’. Each 
resource filter progressively narrows down from the entire set of resources stored inside the 
Analyzer detail view database to a smaller set based on the filter criteria. 

The very first filter operates on the entire set of resources stored inside the Analyzer detail view 
database. The successive filters operate on the related resources of the resources matched in 
the upper level resource filter. Therefore, the very first filter can start by filtering any resource 
type. 

3.1.2  Query structure 
resource_type[filter]…/related_resource_type[filter]/… 

• Must contain at least one level 

• No limit on number of levels 

• Filters are optional 

Let’s look at few query examples: 

• Example 1: Single resource type without any filter 

LHost 

- Consists of a single resource type with no filters. 
- Returns all the resources of LHost type. 

• Example 2: Resource type followed by a scalar filter 

LHost[=name rx node] 

- Consists of resource type followed by a scalar filter. 
- Returns all the resources of LHost type, having  scalar attribute name whose value 

matches the regular expression node. 

• Example 3: Resource type followed by a timeseries filter 

LHost[@L_user rx b .*] 

- Consists of resource type followed by a timeseries filter.  
- Returns all the resources LHost type, having the timeseries attribute L_user whose 

value matches the regular expression ’ .*’. 

• Example 4: Two resource types followed by scalar attribute for each resource type 

LHost[=name rx node]/LHostDisk[=name rx sda] 

- Consists of two resource filters (LHost and LHostDisk) . In the second filter, resource 
LHostDisk is mentioned because LHost is related to LHostDisk.  



9 Hitachi Ops Center Analyzer detail view Query Language User Guide  

 

- Returns all resources of LHost type with name matching the regular expression 
node, and their related resources of LHostDisk type name matching the regular 
expression sda. 

• Example 5: One resource type followed by one scalar and one timeseries filter 

LHost[=name rx node]&[@L_user rx b [U50-U100]{5,}] 

- Combines a scalar and a timeseries filter. 
- Returns all resources of LHost type with attribute name matching regular expression 

node, and timeseries filter on attribute L_user matching the regular expression 
[U50-U100]{5,}.  

- The timeseries data returned are those points where L_user was between 50 and 
100 for 5 consecutive data points. 

3.1.3  Resource filters 

A resource filter consists of a resource type and any number of attribute filters. Each attribute 
filter is enclosed between the big angle brackets, for example, r[f1][f2]. By default, logical OR is 
applied between two filters. A logical AND can be applied between two filters using the & 
operator, for example, r [f1] & [f2]. 

Logical OR and AND operations can be applied between resource filters separated by path 
separator. By default, the operation is logical OR. For example: 

• r1[f1]/r2[f2]. Results of r1[f1] are included irrespective of whether a match occurred at 
r2[f2] 

• r1[f1]/&r2[f2]. Only those results of r1[f1] are included that have a match at r2[f2] 

A special character * (asterisk) can be prefixed to any resource filter. This implies that the 
results of this resource filter will be suppressed in the output results. This is useful in situations 
where results from a subsequent resource filter are required but this resource filter is required 
as a passthrough, for example, *r1[f1]/r2[f2]. 

3.1.4  Attribute filters 

3.1.4.1 Scalar filters 
A scalar filter is used to filter resources based on their scalar attribute values using string regular 
expression. Any regular expression constructed as per JDK 1.7 specifications 
(http://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html) is supported. The filter 
tries to find a subsequence using the specified regular expression as opposed to a complete 
match. 

• Scalar filter structure:  

<resource_type>[=<attribute_id> rx regex] 

Example: Get all hosts that have attribute name containing Host 

http://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html


10 Hitachi Ops Center Analyzer detail view Query Language User Guide  

 

h[=name rx Host]  

Multiple scalar filters on different attributes can be specified using logical operators ‘OR’ 
and ‘AND’. 

Example: h[=name rx node AND osVersion rx 2003] 

Scalar filter samples: 
NOTE: In scalar filter samples, the dotted boxes show results of the query. 

Sample 1: List Host1 and all the VMs that belong to Host1 

h[=name rx Host1]/vm 

 

 

Sample 2: List all the VMs that belong to Host1 
*h[=name rx Host1]/vm  

Note: * prefixed to resource type will cause the resource to be not displayed in the output 



11 Hitachi Ops Center Analyzer detail view Query Language User Guide  

 

 

 

Sample 3: List all Disks that belong to Host 1 and are connected to one or more VMs 
*h[=name rx Host1]/*vm/*vdisk/*diskpart/disk 

 
 

Sample 4: List all Hosts that have one or more VMs with OS Version 2000  
h/&*vm[=osVersion rx 2000] 



12 Hitachi Ops Center Analyzer detail view Query Language User Guide  

 

 
 

3.1.4.2 Timeseries filters 
A timeseries filter is used to filter resources based on their timeseries attribute values using 
modified regular expression syntax used for numerical matching. A basic timeseries filter 
consists of the timeseries attribute ID, look up type, and a regular expression, for example, 
[@L_user rx b [U50-U100]{5,}]. 

The timeseries attribute ID can be a valid timeseries attribute applicable to that resource. The 
character ‘b’ specifies a basic lookup and character ‘d’ specifies delta lookup. Delta lookup 
calculates and returns the numerical difference of the current value in the database and its 
predecessor. 

Any regular expression constructed as per JDK 1.7 specifications 
(http://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html) is supported with 
some modifications: 

• All character and character class lookups are not supported. This is because timeseries 
does not consist of any characters. It only consists of numerical values. 

• A character is substituted by a numerical value prefixed with character ‘U’. This indicates 
to the query parser that a numerical value is specified, for example, U100 or U90.  

• Similar to character range classes, numerical ranges can be specified, for example,  
[U90-U100]. 

• All quantifiers in a normal regular expression are supported, for example, [U90-
U100]{5}. 

 

Timeseries filter structure:  

<resource_type>[@<attribute_id> rx b regex] 

Note: Only numeric values are supported. Numeric values should be prefixed with ‘U’. 

http://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html


13 Hitachi Ops Center Analyzer detail view Query Language User Guide  

 

Examples: 

• List all VMs with all cpuUsage 
vm[@cpuUsage rx b .*] 

• List VMs with cpuUsage = 60 
vm[@cpuUsage rx b [U60]] 

• List VMs with cpuUsage value in the range of 70 and 100 
vm[@cpuUsage rx b [U70-U100]] 

Timeseries filter samples: 
NOTE: In timeseries filter samples, the underlines show results of the query.  

Sample 1: List all Hosts with cpuUsage between 90 and 100 
h[@cpuUsage rx b [U90-U100]] 

 
Sample 2: List all Hosts with cpuUsage between 90 and 100 with at least 3 consecutive 
occurrences 

h[@cpuUsage rx b [U90-U100]{3,}] 

 

 

Sample 3: List all Hosts with cpuUsage between 90 and 100 for 3 or more consecutive 
occurrences OR cpuUsagemhz between 70 and 100 for 5 or more consecutive 
occurrences  
h[@cpuUsage rx b [U90-U100]{3,}][@cpuUsagemhz rx b [U70-
U100]{5,}] 

cpuUsage:  

 
cpuUsagemhz: 

 



14 Hitachi Ops Center Analyzer detail view Query Language User Guide  

 

In this case, the “OR” operator (default) is used between filters so it returns both Host1 and 
Host2. 

 

Sample 4: List all Hosts with cpuUsage between 90 and 100 for 3 or more consecutive 
occurrences AND cpuUsagemhz between 70 and 100 for 5 or more consecutive 
occurrences 

h[@cpuUsage rx b [U90-U100]{3,}]&[@cpuUsagemhz rx b [U70-
U100]{5,}] 

cpuUsage: 

 
cpuUsagemhz: 

 
In this case, the “AND” operator is used between filters so it returns Host2 only. 

 

Sample 5:  List all Hosts with cpuUsage between 70 and 100 having at least one VM 
with cpuUsage between 60 and 100 
h[@cpuUsage rx b [U70-U100]]/&vm[@cpuUsage rx b [U60-U100]] 

Only Host2 matches the query as VM5 belongs to Host 2. Host1 matches the cpuUsage filter but 
there is no qualified VM for it. 

cpuUsage - Host: 

 
cpuUsage - VM: 

 



15 Hitachi Ops Center Analyzer detail view Query Language User Guide  

 

3.1.4.2.1 Time windows 

A timeseries filter is applied on a range of timeseries data as specified by the start time and end 
time of a query. The filter will match different subsequences within this range of timeseries 
data. These are called time windows. A group of such time windows can be given a name, for 
example:  

lHost[@#tw#l_user rx b [U50-U100]{5,}].  

The above example defines a time window named ‘tw’. Just defining a time window does not 
actually alter the results. The results are altered when the time window is referred in another 
timeseries filter, for example:  

lHost[@#tw#l_user rx b [U0-U50]{5,}][@^tw^l_iowait rx b [U50-
U100]+] 

Note the different syntax using ‘^’ for referring to time windows. The above query matches all 
resources of type lHost where l_user was between 0 and 50 for at least 5 consecutive data 
points, and in those time windows value of l_iowait was between 50 and 100 for at least one 
data point. It is important to note that this matching is done on a resource-by-resource basis. 

Matching across resource filters 

Time window can be used across resource filters as well, for example:   

lHost[@#tw#l_user rx b [U0-U50]{5,}]/lHostDisk[@^tw^l_svctm rx b 
[U50-U1000]+]. 

The above query matches all resources of type lHost where l_user was between 0 and 50 for at 
least 5 consecutive data points. Value of l_svctm attribute for all related lHostDisk was between 
50 and 1000 for at least one data point within those time windows. 

Time window filter samples: 
Sample 1: Return all Hosts with cpuUsage between 70 and 100 which have at least one VM 
with cpuUsage between 60 and 100 

h[@#tw#cpuUsage rx b [U70-U100]]/&vm[@^tw^cpuUsage rx b [U60-
U100]] 

In the following examples, a second filter (vm) uses the same time windows (tw) resulting from 
the first filter (h). It matches Host2 only as VM5 belongs to Host2. Host1 matches the cpuUsage 
data but there is no qualified VM for it. 

cpuUsage – Host and VM 

 



16 Hitachi Ops Center Analyzer detail view Query Language User Guide  

 

3.1.4.2.2 Subsequence filtering 

Time window based filtering does not further filter the subsequences matched. For example, 
consider [U90-U100]{5}, which resulted in 10 subsequences. Further filtering, as used in the 
previous section, either removes all subsequences if no match occurred in the lookup filter or 
will retain all the subsequences if a minimum of one match occurred. 

To further filter on specific subsequences, additional syntax is available. Let’s take the same 
query from previous section and add subsequence filtering to it. 

lHost[@#tw#l_user rx b [U0-U50]{5,}](tw:ioWaitHigh = 
1)[ioWaitHigh@^tw^l_iowait rx b [U50-U100]+] 

First, notice that a ‘filter tag’ has been defined on the timeseries filter of attribute l_iowait. 
Second, this filter tag has been referenced in a subsequence condition added to the timeseries 
filter of attribute l_user.  

A filter tag can be defined on any timeseries filter. The same tag can be used on multiple 
timeseries filters. It is referenced in a subsequence filter using the syntax <time window>:<filter 
tag>. Note, the filter tag reference is actually before the filter tag definition. This is the normal 
usage. 

In the above example, for each matching lHost resource and its matching time windows of 
l_user filter, results include only those subsequences on which the timeseries filter on l_iowait 
also matches within the same start position and end position of the subsequence. 

The subsequence expression value ‘1’ in the filter means that at least one filter needs to match. 
By using the same filter tag multiple times, the matching can be made even stricter, for 
example:  

lHost[@#tw#l_user rx b [U0-U50]{5,}](tw:ioWaitHigh = 2)[ioWaitHigh 
@^tw^l_iowait rx b [U50-U1000]+][ioWaitHigh @^tw^l_idle rx b [U70-
U100]+] 

The subsequence expression value ‘2’ here means that both the filters (on l_iowait and l_idle) 
need to match for a subsequence of timeseries filters on l_user to be matched. 

Matching across resource filters 

Subsequence filtering is allowed across resource filters. The syntax is the same as normal 
subsequence filtering. The difference is that the subsequence expression value takes a different 
meaning. Let’s take the same multiple resource filter query from the time windows section and 
add subsequence filtering to it: 

lHost[@#tw#l_user rx b [U0-U50]{5,}](tw:svctmHigh > 
1)/lHostDisk[svctmHigh@^tw^l_svctm rx b [U50-U1000]+] 

In the above example, for each matching lHost resource and its matching time windows of 
l_user filter, results include only those subsequences in which at least two or more related 
lHostDisk resources filter match within the same start position and end position of the 
subsequence. 

Therefore, unlike the previous case where the subsequence expression value referred to the 
number of filters, here it refers to the number of resources matched in other resource filters.  



17 Hitachi Ops Center Analyzer detail view Query Language User Guide  

 

The subsequence expression value supports a few special values besides positive numerical 
values: 

• ‘a’: All resources in the other resource filters must match. This could be used in the above 
example, to ensure that all lHostDisk related to that lHost match instead of two or more. 

• -n: A negative value means all resources except ‘n’ must match. 

By combining multiple time window definitions and lookups, and multiple filter tags and 
subsequence expressions, very complex and powerful filtering can be done on timeseries data. 

 Subsequent filtering samples: 

Sample 1: List all Hosts with cpuUsage between 70 and 100 that have at least one VM 
with cpuUsage between  60 and 100. 
h[@cpuUsage rx b [U70-U100]](t1 > 0)/vm[t1 @ cpuUsage rx b [U60-
U100]] 

In the following examples, the query matches to Host2 only as VM5 belongs to Host2. Host1 
matches the cpuUsage data but there is no qualified VM for it. 

cpuUsage - Host: 

 
cpuUsage – VM 

 
 

Sample 2: List all Hosts with cpuUsage between 70 and 100 that have all VMs with 
cpuUsage between  30 and 100 
h[@cpuUsage rx b [U70-U100]](t1 = a)/vm[t1 @ cpuUsage rx b [U30-
U100]] 

In the following examples, the query matches Host 2 only as VM3, VM4, and VM5 belonging to 
Host 2 have qualified output. Host1 matches the cpuUsage data, but VM1 doesn’t have a 
qualified output. Therefore, Host1 will not be qualified. 

cpuUsage - Host: 

 
cpuUsage – VM 



18 Hitachi Ops Center Analyzer detail view Query Language User Guide  

 

 

 

Sample 3: List all Hosts with cpuUsage between 70 and 100 that have all but one VM with 
cpuUsage between 30 and 100. 

h[@cpuUsage rx b [U70-U100]](t1 = -1)/vm[t1 @ cpuUsage rx b [U30-
U100]] 

In the following examples, Host1 has 1 out of 2 VMs qualified = (all -1). Therefore, it will be 
qualified. Host2 has 3 out of 3 VMs qualified. Since all VMs qualified, Host2 will not be qualified. 
If 2 out of 3 VMs qualified, then Host2 would have been qualified. 

cpuUsage - Host: 

 
  

cpuUsage – VM:

 
 

Sample 4: List all Hosts with cpuUsage between 70 and 100 that have at least one VM with 
cpuUsage between 60 and 100 AND cpuUsagemhz between 70 and 100 

h[@cpuUsage rx b [U70-U100]](t1 > 0 & t2 > 0)/vm[t1 @ cpuUsage rx 
b [U60-U100]] [t2 @ cpuUsagemhz rx b [U70-U100]] 

In the following examples, Host2 has at least one VM (VM5) with qualified output. 

cpuUsage - Host: 

 
cpuUsage – VM: 

 
cpuUsagemhz –VM: 



19 Hitachi Ops Center Analyzer detail view Query Language User Guide  

 

 
 

3.1.4.2.3 Scalar attribute as timeseries 

The scalar attribute as timeseries feature allows you to query the scalar attribute as timeseries 
and shows the result as a series of data points. 

If you want to see the configuration data at regular intervals, then you can query the scalar 
attributes as timeseries.  

Syntax: 

<R>[@<confAttr> rx b <regex>] 

Where, 

R is resource 

confAttr is a scalar metric. 

For example: disk[@usedSpace rx b .*] 
This query returns the usedSpace configuration (scalar) data in a timeseries format at the 
interval of 1 minute. 

Note: Currently, the result is shown in default interval of 1 minute. 

  



20 Hitachi Ops Center Analyzer detail view Query Language User Guide  

 

4 Query language BNF 
The part of query language syntax has been described in Backus-Naur Form with some 
extensions. The following notations are followed: 

• ::= means definition of 
• <abcd> means a non-terminal 
• { … } means zero or more occurrences 
• [ … ] means optional (zero or one occurrence) 
• ‘…’ means literal occurrence of the characters represented between quotes 
• … | … means ‘or’ 
• <ALLUPPERCASE>: A special non-terminal whose definition is provided outside of BNF 
• White space is not allowed between non-terminals or literal occurrences. White space is 

allowed in syntax only where <SPACE> non-terminal has been explicitly mentioned. 

4.1 Query statement 
query_statement::=<resource_filter> { ‘/’ [ ‘&’] <resource_filter> } 

resource::=[‘*’]<RESOURCE_DEF_NAME><filters> 

filters::= <attribute_filter> 

  { ‘&’<attribute_filter> } 

attribute_filter::=config_filter | time_series_filter 

4.2 Scalar filter 
config_filter::=‘[‘ ‘=’<config_filter_def> { 
<config_condition><config_filter_def> } ‘]’ 

config_filter_def::=<ATTRIBUTE_ID><SPACE>‘rx’<SPACE><REGEX> 

config_condition::=‘OR’ | ‘AND’ 

4.3 Timeseries filter 
time_series_filter ::= ‘[‘[ ‘*’] [ <filter_tags><SPACE> ] ‘@’ [ 
<time_window> ] 
<ATTRIBUTE_ID>‘rx’<data_type><time_series_filter_expression>‘]’ 
‘[‘<subsequence_filter>‘]’ 

filter_tags::=<filter_tag> [ ‘,’<filter_tag> ] 

filter_tag::=<STRING_LITERAL> 

time_window::=<time_window_definition>|<time_window_reference> 

time_window_definition::=‘#’<time_window_name>‘#’ 

time_window_reference::=‘^’<time_window_name>‘^’ 

time_window_name::=<STRING_LITERAL> 

data_type::= ‘b’ | ‘d’ 



21 Hitachi Ops Center Analyzer detail view Query Language User Guide  

 

4.3.1 Timeseries filter expression 
time_series_filter_expression::= ‘.*’| { ‘.’ } 
‘[‘‘U’<INTEGER_LITERAL>‘-‘ ‘U’<INTEGER_LITERAL>‘]’ [ 
<occurrence_definition> ] { ‘.’ } 

| <MODIFIED_REGEX>  

occurrence_definition::=‘+’|‘{‘<NUMBER_LITERAL>‘,’ [ <NUMBER_LITERAL> ] 
‘}’ 

4.4 Subsequence filter 
subsequence_filter ::= ‘(‘<subseq_expr> { 
<SPACE><subseq_condition_operator><subseq_expr> } ‘)’ 

subseq_expr ::=
 <subseq_expr_variable><SPACE><subseq_expr_operator><SPACE><subseq
_expr_value> 

subseq_expr_operator ::= ‘&’ | ‘|’ 

subseq_expr_variable ::= <time_window_name>‘:’<filter_tag> 

subseq_expr_operator ::= ‘=’ | ‘>’ | ‘<’ | ‘!’ 

subseq_expr_value ::= <INTEGER_LITERAL>| ‘a’ 

4.5 Non-terminals 
REGEX: Any regular expression constructed as per JDK 1.7 specifications 
(http://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html) 

MODIFIED_REGEX:A normal regular expression but without string lookups and special syntax for 
numerical value lookups. Refer to the “Timeseries Filter” section for details. 

INTEGER_LITERAL: Any positive or negative number 

NUMBER_LITERAL: A positive number 

STRING_LITERAL: A string consisting of alphanumeric characters only 

RESOURCE_DEF_NAME: Refer to the “Resource Definition” section for valid names 

ATTRIBUTE_DEF_NAME: Refer to the “Resource Definition” section for the valid attribute name 
in the context of resource definition 

SPACE: One or white spaces – blank and tab only 

4.6 Limitations 
To build a query, except \ , all other special characters can be used if they make a meaningful 
regex.  

  

http://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html


22 Hitachi Ops Center Analyzer detail view Query Language User Guide  

 

5 Advanced data processing functions 
Advanced data processing functions enable users to perform certain operations without any 
extra efforts. There are a set of in-built functions, which allow users to perform certain 
operations like aggregation, roll up, and deriving a new attribute. 

Following are the supported advanced data processing functions: 

Function Description 

Interval rollup Method to perform aggregation of timeseries data from lower to 
higher data interval. 

Derived attributes Method to create custom attribute using two or more attributes of a 
resource. 

Resource rollup Method to create custom attribute by aggregating data from related 
subresources to parent resource. 

PreProc Method to perform some specific task before actual processing of 
filter. For example, conditional processing of filter. 

5.1 Query options 
To use advanced data processing functions, the user needs to provide some additional options 
to MQL. These additional inputs are provided to MQL using Query Options. Query options can 
be categorized as Query Global Options and Query Filter Options.  

5.1.1 Query global options 

Query global options are the settings that influence the behavior of the entire query result. It is 
applicable to all the filters specified in the query and it must be provided in the beginning of 
query. The following gives the syntax of Query Global Options. 

 
  

(GK1=V1, GK2=V2)<Resource Type> [Filter 1][Filter 2][Filter 3]……[Filter n] 

Query Global 
Options 

Query filters 



23 Hitachi Ops Center Analyzer detail view Query Language User Guide  

 

Where: 

• (): Query Global Options are enclosed in parentheses at the beginning of query. 
• (GK1=V1, GK2=V2): GK1 and V1 are a key-value pair. Multiple query global options can be 

separated by commas. 
 
For example: 
(useStrictAggr=true)vm[@cpuUsage rx b 
.*]{intervalRollupOp=AVG,outputIntervalInSec=300} 

 
Following are the supported Query Global Options: 

Query Global 
Option 

Description Applicable for 

useStrictAggr This Boolean option is used to restrict partial 
data processing for generating output during 
interval rollup.  
The valid values are true and false. 

Interval rollup 

useRealTime Helps define whether real-time data should be 
included in query processing when running a 
query from the Custom Reports feature in the 
server. The valid values are true and false. 

If this option is not specified in the query, real-
time data will be included in query processing 
by default.  

All queries 
Exception: If a query 
includes multiple filters 
and one of those filters 
is the interval rollup 
filter, the real time will 
not be included in query 
processing. 

 

5.1.2 Query filter options 

Query filter options are the settings that influence the behavior of a single filter with which it is 
associated and must follow the associated filter. The syntax of the Query Filter Options is given 
below: 

 
Where: 

<Resource Type> [Filter 1]{Filter Options 1}[Filter 2]{Filter Options 2 } 

Query Filter Options 
for Filter 1 

Query Filter Options 
for Filter 2 



24 Hitachi Ops Center Analyzer detail view Query Language User Guide  

 

• [ ]: Query filter is enclosed in square brackets. 
• { }: Query Filter Options are enclosed in curly braces. Each query filter can have Query 

Filter Options. 
 
For example: 
vm[@cpuUsage rx b .*]{intervalRollUpOp=AVG,outputIntervalInSecs=300} 

 
Following are the supported Query Filter Options: 

 
Query Filter Options Description Applicable for 

inputIntervalInSec Optional parameter to specify which 
interval data will be used in calculation. 
It is useful in cases where data with 
multiple intervals is present in the 
Analyzer detail view database for the 
same time duration. 

Interval Rollup/ 
Derived Attribute/ 
Resource Rollup  

outputIntervalInSec Parameter to specify the data interval 
for expected output. 

Interval Rollup/ 
Derived Attribute/ 
Resource Rollup  

intervalRollupOp Operation to be used while performing 
interval rollup. 
Valid values are - SUM|AVG|MIN|MAX  

Interval Rollup 

inputCounters List of counter(s) that will be used in 
creation of output.  
Additionally, operation can also be 
specified in case of derived attributes. 
Valid values for derived attribute 
operations are - SUM|AVG|DIFF 

Derived Attribute / 
Resource Rollup 

resourceRollupOp Operation to be used while performing 
resource rollup. 
Valid values are 
SUM|AVG|weightedAvg 

Resource Rollup 

outputUnit Parameter to specify unit for newly 
created custom attribute. 

Derived Attribute / 
Resource Rollup 

preProc Function to be performed before 
computing the filter. 

PreProc 

5.2 Interval Rollup 
Interval Rollup is a technique to merge or aggregate data from a lower interval to a higher 
interval. Interval roll up is useful when the user is interested in low granularity of data interval. 



25 Hitachi Ops Center Analyzer detail view Query Language User Guide  

 

For example, the user has second-level timeseries data, but while analyzing data for a longer 
duration, the user might be interested in minute-level granularity. This can be achieved using 
interval rollup. 

This function is applicable only for timeseries data. 

Note: Input data interval must be less than or equal to 30 minutes for interval rollup operation. 

5.2.1 Syntax 

 
 

The following table describes query filter options for interval rollup: 

Query Filter Options Description Valid Values 

intervalRollupOp Operation to be used for aggregation SUM/AVG/MIN/MAX 

outputIntervalInSec Interval, in seconds, at which data needs 
to be rolled up 

0 < X <= 60 

Where 60 is divisible by X 

60 < X < =3600 

Where X is divisible by 60 
& 3600 is divisible by X 

3600 < X <= 86400 

Where X is divisible by 
3600 & 86400 is divisble 
by X 

X > 86400 

<Resource Type> [Filter 
1]{inputCounters=W,intervalRollUpOp=X,outputIntervalInSec=Y,inputInter

valInSec=Z} 

Query Filter Options for 
Interval Rollup operation 



26 Hitachi Ops Center Analyzer detail view Query Language User Guide  

 

Where X is divisible by 
86400 

inputIntervalInSec This is optional.  

If multiple interval data exists,  then this 
parameter can be used to specify the 
interval that should be used as input for 
the rollup operation. 

By default, data from all intervals will be 
flattened out and the result will be used 
as input for rollup. 

 

 

inputCounters 

 

Attribute ID used for interval rollup 
operation. 

This is optional. By default, the counter 
specified in the associated timeseries 
filter will be used for interval rollup.  

W should be an existing 
predefine attribute. 

5.2.2 Supported operations 

The following table describes supported operations for interval Rollup: 

 

Operation Description 

SUM Addition of all non-data hole values will be reported as aggregated value. 

AVG Arithmetic mean of all non-data hole values will be reported as aggregated 
value. Data hole values will be ignored during calculation; only non-data 
holes will be added to get the numerator, and the denominator will also 
have a count of only non-data hole values. 

MIN Minimum of all non-data hole values will be reported as aggregated value. 

MAX Maximum of all non-data hole values will be reported as aggregated value. 

 

5.2.3 Use case 1 

The Analyzer detail view database has minute-level timeseries data for the cpuUsage attribute, 
but the user wants to analyze the same data on 5-minute or 10-minute level granularity. 



27 Hitachi Ops Center Analyzer detail view Query Language User Guide  

 

By default, partial aggregation of data is allowed. The following table illustrates interval rollup 
behavior for the above-mentioned queries. 

Query Start Time: 2:03:00  

Query 
vm[@cpuUsage rx b 
.*]{intervalRollUpOp=AVG, 
outputIntervalInSecs=300} 

vm[@cpuUsage rx b 
.*]{intervalRollUpOp=AVG, 
outputIntervalInSecs=600}  

Time 

Data with 
interval 60 

sec 

outputIntervalInSec = 300 outputIntervalInSec = 600  

SUM AVG MIN MAX SUM AVG MIN MAX  
2:00:00            
2:01:00    
2:02:00    
2:03:00 56.50  
2:04:00 41.89  
2:05:00 95.07 375.43 75.09 40.65 99.75  
2:06:00 99.75  
2:07:00 40.65  
2:08:00 47.56  
2:09:00 92.40  
2:10:00 18.15 84.72 16.94 0.14 54.93 456.19 45.62 0.14 97.48  
2:11:00 0.14  
2:12:00 54.93  
2:13:00 3.84  
2:14:00 7.66  
2:15:00 97.48 371.47 74.29 63.98 97.48  
2:16:00 71.53  
2:17:00 72.77  
2:18:00 65.72  
2:19:00 63.98  
2:20:00 74.46 263.48 65.87 54.56 74.83 263.48 65.87 54.56 74.83  
2:21:00 74.83  
2:22:00 59.63  
2:23:00 54.56  

           

All the supported operations for interval rollup have been displayed in the above table for 5- 
minute and 10-minute rollup. Output data points are aligned to the nearest multiple of the 
output interval. 

Data point at 2:00:00 is not computed using available partial data as the query start time is 
2:03:00, which is after 2:00:00. Even though partial aggregation is allowed, moving back from 
the query time window is not implicit. 

This point would have been calculated if the query start time was either at or before 2:00:00. 
This behavior is illustrated in the next table. 

Aggregated data will be 
reported at the aligned 
time intervals; for example, 
in the 10-minute interval it 
is aligned to 2:10  



28 Hitachi Ops Center Analyzer detail view Query Language User Guide  

 

Query Start Time: 2:00:00  

Query 
vm[@cpuUsage rx b 
.*]{intervalRollUpOp=AVG, 
outputIntervalInSecs=300} 

vm[@cpuUsage rx b 
.*]{intervalRollUpOp=AVG, 
outputIntervalInSecs=600}  

Time 

Data with 
interval 60 

sec 

outputIntervalInSec = 300 outputIntervalInSec = 600  

SUM AVG MIN MAX SUM AVG MIN MAX  
2:00:00   98.39 49.20 41.89 56.50 473.82 67.69 40.65 99.75  
2:01:00    
2:02:00    
2:03:00 56.50  
2:04:00 41.89  
2:05:00 95.07 375.43 75.09 40.65 99.75  
2:06:00 99.75  
2:07:00 40.65  
2:08:00 47.56  
2:09:00 92.40  
2:10:00 18.15 84.72 16.94 0.14 54.93 456.19 45.62 0.14 97.48  
2:11:00 0.14  
2:12:00 54.93  
2:13:00 3.84  
2:14:00 7.66  
2:15:00 97.48 371.47 74.29 63.98 97.48  
2:16:00 71.53  
2:17:00 72.77  
2:18:00 65.72  
2:19:00 63.98  
2:20:00 74.46 263.48 65.87 54.56 74.83 263.48 65.87 54.56 74.83  
2:21:00 74.83  
2:22:00 59.63  
2:23:00 54.56  
           

 
  



29 Hitachi Ops Center Analyzer detail view Query Language User Guide  

 

Since, query start time is at 2:00:00, the first data point for both aggregated intervals is 
computed using partial data. 

The user can also force this initial aggregation by setting 
“query.allow.move.back.in.timewindow.for.aggr” to true in the query.properties file under 
/usr/local/megha/conf/sys/. This will enforce partial aggregation even if aligned start time is 
before query start time. The following table illustrates this behavior. 

 
Query Start Time: 2:03:00 
query.allow.move.back.in.timewindow.for.aggr: true  

Query 
vm[@cpuUsage rx b 
.*]{intervalRollUpOp=AVG, 
outputIntervalInSecs=300} 

vm[@cpuUsage rx b 
.*]{intervalRollUpOp=AVG, 
outputIntervalInSecs=600}  

Time 

Data with 
interval 60 

sec 

Output Interval In Seconds = 300 outputIntervalInSec = 600  

SUM AVG MIN MAX SUM AVG MIN MAX  
2:00:00   98.39 49.20 41.89 56.50 473.82 67.69 40.65 99.75  
2:01:00    
2:02:00    
2:03:00 56.50  
2:04:00 41.89  
2:05:00 95.07 375.43 75.09 40.65 99.75  
2:06:00 99.75  
2:07:00 40.65  
2:08:00 47.56  
2:09:00 92.40  
2:10:00 18.15 84.72 16.94 0.14 54.93 456.19 45.62 0.14 97.48  
2:11:00 0.14  
2:12:00 54.93  
2:13:00 3.84  
2:14:00 7.66  
2:15:00 97.48 371.47 74.29 63.98 97.48  
2:16:00 71.53  
2:17:00 72.77  
2:18:00 65.72  
2:19:00 63.98  
2:20:00 74.46 263.48 65.87 54.56 74.83 263.48 65.87 54.56 74.83  
2:21:00 74.83  
2:22:00 59.63  
2:23:00 54.56  
           
           

Partial aggregation is a default behavior. However, this can be overridden by using Query Global 
Option. User may pass useStrictAggr=true option to restrict partial aggregation of data. 

For example: 



30 Hitachi Ops Center Analyzer detail view Query Language User Guide  

 

(useStrictAggr=true)vm[@cpuUsage rx b 
.*]{intervalRollupOp=AVG,outputIntervalInSec=300} 

Following table displays the behavior when useStrictAggr is set to true in Query Global Option. 

 
Query Start Time: 2:00:00 
useStrictAggr: true  

Query 
vm[@cpuUsage rx b 
.*]{intervalRollUpOp=AVG, 
outputIntervalInSecs=300} 

vm[@cpuUsage rx b 
.*]{intervalRollUpOp=AVG, 
outputIntervalInSecs=600}  

Time 

Data with 
interval 
60 sec 

outputIntervalInSec= 300 outputIntervalInSec= 600  

SUM AVG MIN MAX SUM AVG MIN MAX  
2:00:00            
2:01:00    
2:02:00    
2:03:00 56.50  
2:04:00 41.89  
2:05:00 95.07 375.43 75.09 40.65 99.75  
2:06:00 99.75  
2:07:00 40.65  
2:08:00 47.56  
2:09:00 92.40  
2:10:00 18.15 84.72 16.94 0.14 54.93 456.19 45.62 0.14 97.48  
2:11:00 0.14  
2:12:00 54.93  
2:13:00 3.84  
2:14:00 7.66  
2:15:00 97.48 371.47 74.29 63.98 97.48  
2:16:00 71.53  
2:17:00 72.77  
2:18:00 65.72  
2:19:00 63.98  
2:20:00 74.46          
2:21:00 74.83  
2:22:00 59.63  
2:23:00 54.56  
 
           

Note: If data of the multiple intervals is present in the Analyzer detail view database for a 
resource within the same time, then for interval rollup each interval’s data will be used if 
inputIntervalInSec query filter option is not specified. Each interval data will be picked one by 
one; if there is any data hole after aggregation from data belonging to an interval, only then it 
will be filled by aggregated data using other intervals.  

This interval is not considered in calculations 
because useStrictAggr is set to true 



31 Hitachi Ops Center Analyzer detail view Query Language User Guide  

 

For example, the Analyzer detail view database have data for 1-minute and 5-minute intervals 
for the same duration, and the user has requested 10-minute aggregation using AVG operation - 
in this case all of these interval data will be used in aggregation. 

1-minute data 5-minute data Output after aggregation from 
1-minute data  

Final output 

  97.07   79.22 
  
  
  
  
  61.36 
  
  
  
  

99.34 65.53 53.74 53.74 
81.97 
91.27 
22.55 
32.54 
25.45 41.94 
15.48 
79.31 
34.22 
55.27 

First, 1-minute data is aggregated to get data at 10-minute interval data. Since there was no 1-
minute data to be aggregated for the first 10 minutes, 5-minute interval data was used for 
aggregation in that period. 

However, the sequence of intervals is not fixed. It depends on the order of intervals in stored 
data. 

 

5.2.4 Use case 2 

The Analyzer detail view database has minute-level timeseries data for cpuUsage attribute, but 
the user wants to analyze the same data on 5-minute or 10-minute level granularity by using a 
multiple interval rollup operation such as min, max, and avg. 

The user can use multiple filter options for cpuUsage having different interval rollup operations. 
But in that case, the user will not be able to identify which series are computed by using which 
given operation. We can use the filter options property inputCounters to overcome this 
problem. 



32 Hitachi Ops Center Analyzer detail view Query Language User Guide  

 

For example: 
 
vm[@cpuUsage_avg rx b .*]{inputCounters=cpuUsage, 
intervalRollUpOp=AVG,outputIntervalInSecs=300}[@cpuUsage_min]{ 
inputCounters=cpuUsage, intervalRollUpOp=MIN,outputIntervalInSecs=300} 
 

Here, cpuUsage is used for interval rollup, and cpuUsage_avg, and cpuUsage_min to show the 
computed series.  

 

5.3 Derived attributes 
New attributes can be computed on the fly from existing stored attributes within MQL. 

MQL supports SUM, AVG, DIFF, MULT, DIV, and weightedAVG operations for the computation of 
derived attributes. These operations can be performed between timeseries attributes or scalar 
attributes. MULT and DIV operations can also be performed between:  

• Timeseries attribute and constant numerical value 
• Timeseries attribute and scalar attribute 
• Scalar attribute and constant numerical value 

5.3.1 Syntax 

 
 
  

The following table describes query filter options for derived attributes: 

Query Filter 
Options 

Description Valid Values Remarks 

inputCounters Operation and list 
of attributes to be 
used for deriving 
new attribute 

X can be SUM, AVG,  
DIFF, weightedAVG, 
MULT, DIV  

A1, A2, A3 are 
attributes for Resource 
R1.  

For DIFF, MULT, and 
DIV operations, only 
two attributes are 
permitted. 

R1 [Filter 1]{inputCounters=X(A1:A2:A3),outputIntervalInSec=Y,inputIntervalInSec=Z} 

Query Filter Option parameters 
for derived attribute calculation 



33 Hitachi Ops Center Analyzer detail view Query Language User Guide  

 

For the MULT and DIV 
operations, A2 can be a 
numeric constant 
value.  

MULT or DIV supports 
operations between 
timeseries and scalar 
attributes. If there is 
operation between 
timeseries and scalar 
attributes, A1 should 
be timeseries attribute 
and A2 should be 
scalar. 

outputIntervalInSec This is optional. 

Interval, in 
seconds, at which 
output data is 
expected.  

If it is not 
specified, separate 
series for each 
available data 
interval or 
specified 
inputInterval will 
be computed and 
returned. 

Same as interval rollup  Only applicable for 
timeseries attributes 

inputIntervalInSec As explained above 
in interval rollup 

 

 Applicable only for 
timeseries attributes 

 

 

 

 

 



34 Hitachi Ops Center Analyzer detail view Query Language User Guide  

 

5.3.2 Supported operations 

The following table describes supported operations for derived attributes: 

Operation Description 

SUM Addition of non-data hole value for all inputCounter’s  attributes of a 
resource will be reported as a derived value. 

AVG Arithmetic mean of non-data hole value for all inputCounter’s  attributes of 
a resource will be reported as a derived value. 

DIFF DIFF operation supports two input counters. Subtraction of the second 
attribute’s value from the first attribute value will be reported as a derived 
value. 

weightedAvg See use case 2 

MULT The MULT operation supports two input counters. Multiplication of a non-
data hole value for all inputCounter attributes of a resource are reported as 
a derived value. 

DIV The DIV operation supports two input counters. Division of a non-data hole 
value for all inputCounter attributes of a resource are reported as a derived 
value. 

The above-mentioned operations can be performed on both time series and scalar attributes 
having numeric values. For example, Time series: IOPS, throughput, and so on. Scalar: Total 
capacity, Free capacity, and so on. 

These operations on scalar attributes are supported only through Query API (REST API). Refer to, 
Hitachi Ops Center Analyzer detail view REST API Reference Guide for more information. 

The Analyzer detail view’s Report Builder feature does not support these operations on the 
scalar attributes. 

5.3.3 Use case 

Use case 1 

The Analyzer detail view database has capacityGB and freeSpaceGB attributes for each 
host, but the user wants to see the difference between these two as usedcapacity, which is 
not stored directly in the Analyzer detail view database. 

ds[=usedcapacity rx .*]{inputCounters=DIFF(capacityGB: 
freeSpaceGB)} 

The above query retrieves the scalar attributes capacityGB and freeSpaceGB for each 
host and reports the difference as usedcapacity on each. 

For scalar attributes, allowed operations for derived attributes are explained in following table: 



35 Hitachi Ops Center Analyzer detail view Query Language User Guide  

 

Resource Scalar 
attribute 1 

Scalar 
attribute 2 

Operations 

SUM AVG DIFF MULT DIV 

R1 12.03 6.7 18.73 9.37 5.33 80.601 1.795522 

R2 10.1 8.2 18.3 9.15 1.9 82.82 1.231707 

For the DIFF operation, scalar attribute 2 is subtracted from scalar attribute 1. For instance, in 
the above query, freeSpaceGB will be subtracted from capacityGB. 

For the DIV operation, scalar attribute 1 is divided by scalar attribute 2. 

Use case 2 

Weighted average of attributes may be required where the general mean of data values is not 
sufficient, for example, while calculating a derived attribute from LDEV’s attributes IOPS  and  
responseTime. It would be meaningful to weight the response time on the basis of IOPS of LDEV 
at that time instead of taking the general average. 

Weighted average:  

The weighted arithmetic mean is similar to an ordinary arithmetic mean (the most common type 
of average), except that instead of each data point contributing equally to the final average, 
some data points contribute more than others. 

 

 

Where, 
n = repesents the number of data samples 
I = represents the weighted attribute 
R = represents the other attribute 
Conditions for the derived weighted average operation: 

Derived weighted average operation works for only two attributes of the same resource.  

For example: 
raidLdev[@weightedResponseTime rx b .*]{ inputCounters=weighted 
AVG(IOPS:responseTime),inputIntervalInSec=60} 

The above query computes the derived attribute “weightedResponseTime” by applying the 
weighted average operation on the IOPS and responseTime attributes.  

The following two tables illustrate the weighted average operation on attribute I and R, where I 
is the weighted attribute: 

 

Avgw = ∑ 𝐼𝐼𝑛𝑛𝑅𝑅𝑛𝑛
𝑛𝑛
𝑖𝑖=1
∑ 𝐼𝐼𝑛𝑛
𝑛𝑛
𝑖𝑖=1

 



36 Hitachi Ops Center Analyzer detail view Query Language User Guide  

 

The following table illustrates input data of attribute I and R for one resource: 

Time 
Res 1 

I R 
2:00:00     
2:01:00 84.38 80.05 
2:02:00 9.47 70.53 
2:03:00 63.87 97.04 
2:04:00 76.85 30.23 

  

The following table shows intermediate results and weighted average:  

Time Res 1 
∑I Weighted 

Average  IR 
2:00:00       
2:01:00 6754.70 84.38 80.05 
2:02:00 665.741 9.47 70.53 
2:03:00 6197.9448 63.87 97.04 
2:04:00 2323.1755 76.85 30.23 

 

Use case 2 

The Analyzer detail view database has readIOPS and writeIOPS for each disk, but the 
requirement may be to analyze totalIOPS, which is not directly stored in the Analyzer detail view 
database. 

disk[@totalIOPS rx b 
.*]{inputCounters=SUM(readIOPS:writeIOPS),outputIntervalInSec=60} 

The above query retrieves the timeseries data of attribute readIOPS and writeIOPS for each disk 
and reports the sum of these two as totalIOPS on each. 

Similar to scalar derived attributes, timeseries attribute can also be derived using the available 
timeseries attribute on a resource. The following table displays different operations on two 
timeseries data for a resource to create a derived attribute. For SUM and AVG, more than two 
attributes can also be used. 

Time 

Counter 1 
Data with 
interval 
60 sec 

Counter 2 
Data with 
interval 60 

sec 

Operation 

SUM AVG DIFF MULT DIV 
2:00:00             
2:01:00             
2:02:00   95.07 95.07 95.07 -95.07   
2:03:00 56.50 99.75 156.25 78.13 -43.25 5635.88 0.57 
2:04:00 41.89 40.65 82.54 41.27 1.24 1702.83 1.03 



37 Hitachi Ops Center Analyzer detail view Query Language User Guide  

 

2:05:00 95.07 47.56 142.62 71.31 47.51 4521.53 2 
2:06:00 99.75 92.40 192.15 96.08 7.36 9216.90 1.08 
2:07:00 40.65 18.15 58.80 29.40 22.50 737.80 2.24 
2:08:00 47.56 56.50 104.06 52.03 -8.94 2687.14 0.84 
2:09:00 92.40 41.89 134.29 67.14 50.51 3870.64 2.21 
2:10:00 18.15 95.07 113.22 56.61 -76.92 1725.52 0.19 
2:11:00 0.14 99.75 99.89 49.94 -99.62 13.97 0 
2:12:00 54.93 40.65 95.59 47.79 14.28 2232.90 1.35 
2:13:00 3.84 47.56 51.40 25.70 -43.72 182.63 0.08 
2:14:00 7.66 74.46 82.11 41.06 -66.80 570.36 0.1 
2:15:00 97.48 74.83 172.31 86.15 22.65 7294.43 1.3 
2:16:00 71.53 59.63 131.16 65.58 11.90 4265.33 1.2 
2:17:00 72.77 54.56 127.34 63.67 18.21 3970.33 1.33 
2:18:00 65.72 97.48 163.20 81.60 -31.76 6406.39 0.67 
2:19:00 63.98 71.53 135.51 67.75 -7.55 4576.49 0.89 
2:20:00 74.46 72.77 147.23 73.61 1.68 5418.45 1.02 
2:21:00 74.83 65.72 140.55 70.27 9.11 4917.83 1.14 
2:22:00 59.63 63.98 123.61 61.80 -4.34 3815.13 0.93 
2:23:00 54.56 47.56 102.12 51.06 7.01 2594.87 1.15 

DIFF and DIV operations on timeseries attributes work similarly to scalar attributes. 

If outputIntervalInSecs is different from the data interval stored in the Analyzer detail view 
database and if no intervalRollupOp is specified, output will not be generated. If 
OutputIntervalInSecs is different from the data interval, the user must specify intervalRollupOp. 
This behavior is explained in following table:  



38 Hitachi Ops Center Analyzer detail view Query Language User Guide  

 

 

Time 

Counter 
1 Data 
with 

interval 
60 sec 

Counter 
2 Data 
with 

interval 
60 sec 

OutputIntervalInS
ec=300 (Interval 
Rollup Op Not 

Specified) 

OutputIntervalInSec=300 
Interval Rollup Op = SUM 

SUM AVG 
DIF
F 

Counter 
1 data 
rolled 

up 

Counter 
2 data 
rolled 

up SUM AVG DIFF 
2:00:
00           

- -       

2:01:
00           
2:02:
00   95.07 

- - - 

2:03:
00 56.50 99.75 

- - - 

2:04:
00 41.89 40.65 

- - - 

2:05:
00 95.07 47.56 

- - - 

375.43 256.50 
631.9

2 
315.
96 

118.
93 

2:06:
00 99.75 92.40 

- - - 

2:07:
00 40.65 18.15 

- - - 

2:08:
00 47.56 56.50 

- - - 

2:09:
00 92.40 41.89 

- - - 

2:10:
00 18.15 95.07 

- - - 

84.72 357.49 
442.2

1 
221.
10 

-
272.
76 

2:11:
00 0.14 99.75 

- - - 

2:12:
00 54.93 40.65 

- - - 

2:13:
00 3.84 47.56 

- - - 

2:14:
00 7.66 74.46 

- - - 

2:15:
00 97.48 74.83 

- - - 

371.47 358.03 
729.5

1 
364.
75 

13.4
4 

2:16:
00 71.53 59.63 

- - - 

2:17:
00 72.77 54.56 

- - - 



39 Hitachi Ops Center Analyzer detail view Query Language User Guide  

 

2:18:
00 65.72 97.48 

- - - 

2:19:
00 63.98 71.53 

- - - 

2:20:
00 74.46 72.77 

- - - 

263.48 250.02 
513.5

1 
256.
75 

13.4
6 

2:21:
00 74.83 65.72 

- - - 

2:22:
00 59.63 63.98 

- - - 

2:23:
00 54.56 47.56 

- - - 

 

Use case 3 

The Analyzer detail view database stores virtual volume capacity in GB (vvolCapacityInGB) for 
each logical device, but the user wants to analyze the total capacity in MB, which is not directly 
stored in the Analyzer detail view database. 

raidLdev[@vvolCapacityInMB rx b 
.*]{inputCounters=MULT(vvolCapacityInGB: 
1000),outputIntervalInSec=60} 

The above query retrieves the timeseries data of attribute vvolCapacityInGB for each logical 
device and reports the division totalCapacityInGB and 1000 as totalCapacityInMB on each of 
them. 

The following table displays division and multiplication operations on timeseries data for a 
resource with numeric constant value to create a derived attribute.  

Time 

Counter 1 Data with 
interval 60 sec 

(Timeseries) 

Operation 

MULT by 1.5 DIV by 0.5 

2:00:00      
2:01:00      
2:02:00     
2:03:00 56.50 84.75 113.00 
2:04:00 41.89 62.84 83.78 
2:05:00 95.07 142.61 190.14 
2:06:00 99.75 149.63 199.50 
2:07:00 40.65 60.98 81.30 
2:08:00 47.56 71.34 95.12 
2:09:00 92.40 138.60 184.80 
2:10:00 18.15 27.23 36.30 
2:11:00 0.14 0.21 0.28 
2:12:00 54.93 82.40 109.86 
2:13:00 3.84 5.76 7.68 



40 Hitachi Ops Center Analyzer detail view Query Language User Guide  

 

2:14:00 7.66 11.49 15.32 
2:15:00 97.48 146.22 194.96 
2:16:00 71.53 107.30 143.06 
2:17:00 72.77 109.16 145.54 
2:18:00 65.72 98.58 131.44 
2:19:00 63.98 95.97 127.96 
2:20:00 74.46 111.69 148.92 
2:21:00 74.83 112.25 149.66 
2:22:00 59.63 89.45 119.26 
2:23:00 54.56 81.84 109.12 

 

Use case 4 

The Analyzer detail view database stores speed in GB (speedInGB) for each port, but the user 
wants to see the port speed in MB, which is not stored directly in the Analyzer detail view 
database. 

raidPort[=speedInMB rx .*]{inputCounters=MULT(speedInGB:1000)} 

The above query retrieves scalar attributes’ speedInGB for each port and reports the 
multiplication of speedInGB and 1000 as speedInMB on each of them. 

For scalar attribute, allowed operations for derived attributes with constant numeric value are 
explained in the following table: 

Resource Scalar 
attribute 1 

Operations with 1.5 

MULT DIV 

R1 12.03 18.045 8.02 

R2 10.1 15.15 6.733333 

Note: Attribute ID specified for derived attributes may or may not be present in the Analyzer 
detail view database schema. However, it is recommended to use a predefined attribute ID for 
this operation. 

5.4 Resource Rollup 
Analyzer detail view consolidates the attribute’s value from all related resources at any level to 
the parent resource using specified attributes. 

This can be useful in abstracting overwhelming details of individual resources by presenting data 
analysis on a higher level.  Sometimes, the user needs to see the details at a higher level instead 
of its detailed view. For example, instead of looking into each LDEV counter, one might be 
interested to view it at the pool level. In this case, since the counter is actually present at the 
lower level, we should add up the values of all comprising resources to the upper level resource. 



41 Hitachi Ops Center Analyzer detail view Query Language User Guide  

 

Example:  

Let us consider a scenario where resources from type A, B, and C are related as shown in the 
following diagram. 

 
 

Using the Resource Rollup feature, the user can aggregate and view data from B1, B2, and B3 at 
A1 and B4, and B5 at A2 using query filter options. In addition, the user can also view data from C 
type resources at A1 and A2.  

5.4.1 Syntax 

The above query will roll up the timeseries attribute attr from all related resources of type C 
reachable from resources of type A via resources of B. 

To explain the above statement let us consider relation hierarchy from the above diagram. 

attr timeseries counters of C1, C2, C3, C4, and C5 will be rolled up to the A1 resource by 
averaging out data from all resources (C1, C2, C3, C4, and C5 ) at each timestamp. Even though 

A2 

B1 B5 B4 B3 B2 

C1 C2 C3 C4 C5 C6 C7 

A1 

Resource relation hierarchy between resources of type A,B, and C. 

A[=name rx  .*]&[@attribute rx b.+] 
{inputCounters=B/C.attr,resourceRollupOp=avg} 

 

B/C indicates a relation path 
from resource type A. 

Query Syntax for Multilevel Resource Rollup 



42 Hitachi Ops Center Analyzer detail view Query Language User Guide  

 

A1 has no direct relation with any of these resources of type C, they were reachable through 
intermediate resource B1, B2, and B3 of resource type B, as shown in the above diagram. 

This feature allows the user to roll up data from any (directly or indirectly) related resources if a 
viable path exists between them. 

As you can see, Resource C3 is reachable through two different paths: 

A1 -> B2 -> C3, and 

A1 -> B3 -> C3. 

Measures will be taken by query processing to ensure that data is not considered twice (or more 
in case of more reachable paths).  

If any resource is reachable from more than one path for the same time window, data from that 
resource will be considered only ONCE for that time window to ensure data correctness. 

 
The following table describes query filter options for resource rollup: 

 

Query filter options Description Valid values Remarks 

resourceRollUpOp Used for rolling up 
data from 
subresources 

X can be 
SUM|AVG|MIN|MAX|
weightedAvg 

 

inputCounters List of attribute(s) and 
optional operations 
for rollup 

B/C is a relation path 
from A.  

‘attr’ is attribute  of 
resource type C.  

May be clubbed 
with Derived 
attribute if 
required – 
<Derived 
Operation>(B/C.a
ttr1:attr2) 

outputIntervalInSec This is optional. 

Same as interval 
rollup. 

If it is not specified, 
separate series for 
each available data 
interval or specified 
inputInterval will be 
computed and 
returned. 

 Only applicable 
for timeseries 
attributes 



43 Hitachi Ops Center Analyzer detail view Query Language User Guide  

 

Query filter options Description Valid values Remarks 

inputIntervalInSec Same as interval 
rollup. 

 Only applicable 
for timeseries 
attributes 

 

5.4.1.1 Resource filtering 
There may be cases where the user does not want to view data being rolled up from every related 
subresource. One may want to apply certain filters to limit the resources which are used for 
resource rollup. To support this requirement, multilevel resource rollup allows Scalar and Relation 
filters to include only a subset of related resources in rollup computation. 

Scalar Filtering 

 
 

Scalar filters can be applied at any level in the relation path specified in the inputCounters 
parameter. This will restrict the reachable leaf-level resources from root.  

For example, in the above scenario, due to scalar filtering at resource path B, the reachable C 
resources are only C1 and C2. Therefore, only timeseries data from these resources will be 
rolled up to A1. No data will be found at resource A2 as it is not related to resource B1. 

Relation filtering 

Under certain circumstances, the user may need to apply some filtering at the relationship level. 
For example: 

 ‘Rollup resources of type C to A which are reachable through B and also are related to resource 
type D’. 

This need can be specified using Relation filtering. 

Relation filters are newly added and are currently supported only inside multilevel resource 
rollup. They cannot be used outside Query filter options like other filters such as scalar and 
timeseries. 

A[=name rx  .*]&[@attribute rx b.+] 

{inputCounters=B[=name rx B1]/C.attr,resourceRollupOp=avg} 
  

Rollup resources of type C 
reachable from A through B1 

Query Syntax forMultilevel Resource Rollup with Scalar filtering 



44 Hitachi Ops Center Analyzer detail view Query Language User Guide  

 

 
 

The above query may limit C resources from participating in resource rollup if they are not 
related to any resource of type D. 

 
Let us consider the above relation hierarchy to understand relation filtering, 

As only C1, C2, C3, and C4 are reachable from A1 and also have relation with resource D1 and D2 
of type D, only the data from these resources will be used in resource rollup. C5 will be filtered 
out even though it is reachable from A1 through B3 as it does not have relation with any 
resource of type D. Similarly, at A2, data from only C6 will be rolled up. 

 

Multiple relation filtering or scalar filtering can be applied at any level. Use ‘&’ for Logical AND of 
filters. 

A[=name rx  .*]&[@attribute rx b.+] 

{inputCounters=B/C[/D.name rx .*].attr,resourceRollupOp=avg} 
  

Only consider those resources 
of type C which are related to 

Resource of type D 

Query Syntax for Multilevel Resource Rollup with Relation  filtering 

A2 

B1 B5 B4 B3 B2 

C1 C2 C3 C4 C5 C6 C7 

A1 

Resource relation between resources of type A,B C, and D. 

D1 D2 D3 



45 Hitachi Ops Center Analyzer detail view Query Language User Guide  

 

5.4.2 Supported operations 

The following table describes supported operations for resource rollup: 

Operation Description 

SUM Addition of non-data hole values for each related subresource attribute. 

AVG Arithmetic mean of non-data hole values for each related subresource 
attribute. 

MIN Minimum of non-data hole values for each related subresource attribute. 

MAX Maximum of non-data hole values for each related subresource attribute. 

weightedAvg Explained later in use case 2. 

The above operations can be performed on both timeseries and scalar attributes. Only scalar 
attributes having numerical values can be used. 

5.4.3 Use case 

Use case: 1  

The Analyzer detail view database has a pool with three associated LDEVs, each having 
corresponding utilization values. This can be rolled up at the pool level by averaging all LDEV 
utilization.  
raidPool[@totalUtilization rx b .*]{resourceRollupOp=avg, 
inputCounters=raidLdev.utilization, inputIntervalInSec=60} 

The above query rolls up LDEVs utilization to the pool level by averaging utilization. 

The following table shows timeseries data of attribute 1 for three resources. These values can be 
rolled up to its parent resource using resourceRollupOp. 

Time  Attribute 1 Parent resource 
Resource 1 Resource 2 Resource 3 SUM AVG 

2:00:00           
2:01:00 56.50 99.75 18.15 174.40 58.13 
2:02:00 41.89 40.65 56.50 139.04 46.35 
2:03:00 95.07 47.56 41.89 184.52 61.51 
2:04:00 99.75 92.40 95.07 287.22 95.74 

inputCounters for resource rollup can also be derived from the subresource’s attributes. 

For example: 
raidPool[@totalIOPS rx b .*] {resourceRollupOp=avg, 
inputCounters=SUM(raidLdev.readIOPS:writeIOPS),inputIntervalInSec=60} 



46 Hitachi Ops Center Analyzer detail view Query Language User Guide  

 

In the above query, first readIOPS and writeIOPS will be added to get totalIOPS at each raidLdev 
level. Once totalIOPS is derived for each raidLdev, it will be rolled up to its parent pool using 
average operation. 

The following table displays rollup of attributes derived from attribute1 and attribute2 present 
at the sublevel resource. 

Time attribute (C1) Attribute(C 2) Derived attribute = 
SUM(R.C1:C2) 

Parent resource 

Resource 
 

Resource 
 

Resource SUM AVG 

1 2 1 2 1 2 

2:00:00                 
2:01:00 56.50 99.75 22.95 63.75 79.45 163.50 242.95 121.48 

2:02:00 41.89 40.65 91.71 94.57 
133.6

0 135.22 268.82 134.41 

2:03:00 95.07 47.56 32.61 42.97 
127.6

8 90.53 218.21 109.10 

2:04:00 99.75 92.40 16.02 35.77 
115.7

7 128.17 243.94 121.97 

 

Use case 2:  

Weighted average of attributes may be required where the general mean of data values is not 
sufficient, for example, while rolling up responseTime from LDEVs to pool. It would be 
meaningful to weight the response time on basis of IOPS of LDEV at that time instead of taking 
the general average. 

Weighted average:  

The weighted arithmetic mean is similar to an ordinary arithmetic mean (the most common type 
of average), except that instead of each of the data points contributing equally to the final 
average, some data points contribute more than others. 

 

 

Where: 
n = number of data samples 
I = represents the weighted attribute 
R = represents the other attribute 
Conditions for resource rollup weighted average operation: 

Avgw = ∑ 𝐼𝐼𝑛𝑛𝑅𝑅𝑛𝑛
𝑛𝑛
𝑖𝑖=1
∑ 𝐼𝐼𝑛𝑛
𝑛𝑛
𝑖𝑖=1

 



47 Hitachi Ops Center Analyzer detail view Query Language User Guide  

 

• Weighted average rollup is a variant of resource rollup which requires two counters 
from a sublevel resource to contribute for each data point. 

• Weighted rollup operation works for only two attributes. 

• No need to specify derived operation in inputCounters. 

 

For example: 
raidPool[@weightedResponseTime rx b .*]{ resourceRollupOp=weightedAvg, 
inputCounters=(raidLdev.IOPS:responseTime),inputIntervalInSec=60} 

The above query rolls up LDEVs responseTime to pool level by cumulating each LDEV 
responseTime weighted by its IOPS. 

The following two tables illustrate weighted average operation on attribute I and R where I is 
the weighted attribute. 

The following table illustrates input data of attribute I and R for three resources. 

Time 
Res 1 Res 2 Res 3 

I R I R I R 
2:00:00             
2:01:00 84.38 80.05 1.99 89.94 19.11 0.43 
2:02:00 9.47 70.53 70.60 5.48 66.18 86.83 
2:03:00 63.87 97.04 84.89 72.10 68.45 79.61 
2:04:00 76.85 30.23 45.27 52.93 1.21 34.72 

 The following table shows intermediate results and weighted average. 

Time Res 1 Res 2 Res 3 
∑IR ∑I Weighted 

average  IR IR IR 
2:00:00             
2:01:00 6754.70 179.19 8.31 6942.20 105.49 65.81 
2:02:00 667.86 387.09 5745.73 6800.68 146.24 46.50 
2:03:00 6197.30 6120.59 5449.69 17767.58 217.21 81.80 
2:04:00 2322.89 2396.11 42.03 4761.03 123.32 38.61 

 

Note:  

- Resource rollup can be performed from any related resources. 

- Analyzer detail view creates an attribute definition for rolled up attributes, if an attribute 
definition is not defined. However, it is recommended to use a predefined attribute ID for a 
rolled up attribute. 

- In weightedAvg, attributes must be specified as inputCounters from the same subresource. 
In two attributes, the second attribute is weighed upon using the first attribute. 

 



48 Hitachi Ops Center Analyzer detail view Query Language User Guide  

 

Use case: 3  

The Analyzer detail view database has a pool with 10 associated LDEVs, each having 
corresponding utilization values and only some have a parity group. So, if we want to consider 
only those LDEVs in rolled up which have a parity group, then the rolled up query will be: 

 

raidPool[@utilization rx b .+]{ 
resourceRollupOp=avg,inputCounters=raidLdev[=parityGroup rx 
.+].utilization} 

 

5.5 preProc 
PreProcessing is a feature that allows performing a certain task before actually processing a 
filter. This allows making a decision such as whether or not to process the filter. It is useful for 
performing certain actions before evaluating filter output. 

For example, there may be two attributes defined for a resource but either is required for 
analysis. In this case, output of one attribute filter is only computed if the other attribute value 
is not present in the Analyzer detail view database. To achieve this, the user can use the preProc 
condition as a query filter option. 

5.5.1 Syntax 

 
Where: 

• ifNoData: Function that checks whether Filter1 result data is present or not. If Filter1 
output data is present, then Filter 2 won’t be processed. 

•  Presently only ifNoData method is supported for the preProc condition. 

5.5.2 Use case 

Data for the totalIOPS attribute might or might not be present for an LDEV resource depending 
on the collection mechanism. If it is not present, then compute by adding readIOPS and 
writeIOPS. 

<Resource Type> [Filter 1][Filter 2]{preProc=ifNoData(Filter 1)} 

Query Filter Options 
parameters for preProc 

condition 



49 Hitachi Ops Center Analyzer detail view Query Language User Guide  

 

raidLdev[@totalIOPS rx b .*] [@derivedTotalIOPS rx b 
.*]{preProc=ifNoData(totalIOPS),inputCounters=SUM(readIOPS:writeIOPS),outpu
tIntervalInSec=60} 

The above query will first compute totalIOPS for raidLdev, and it will calculate derivedtotalIOPS 
only if totalIOPS is not present in the Analyzer detail view database. derivedtotalIOPS will be 
derived by adding the readIOPS and writeIOPS attribute value. 

 

  



50 Hitachi Ops Center Analyzer detail view Query Language User Guide  

 

6 External scripts 
Functionality of MQL can be further extended by invoking scripts written in other programming 
languages. This is particularly useful when users want to leverage capabilities of other languages 
to satisfy their special needs. For example, R language has a built-in support for many statistical 
operations. Users can refer to R script in MQL, then the query engine would pass appropriate 
timeseries and scalar data to that R script, get it processed, and convert the output back in MQL 
format. In the following sections, we will look at supported programming languages, setup 
required, and syntax in detail. 

However, the general mechanism of this functionality can be described as follows:  

• User embeds R, Python, Groovy code/function/script in MQL to manipulate its scalar 
and timeseries output. 

• A hook is provided in MQL that accepts a callback function in scripting language. This 
callback function manipulates original filter results and generates new output. 

• This output is then passed back to the query engine and is made available as MQL 
output. 

6.1 Supported scripting languages 
Users can write custom processing functions in the following programming languages and use 
them from MQL: 

• R 
• Groovy 
• Python 

When MQL with external script is executed, the query engine connects/invokes appropriate 
language runtime, marshals data in the script’s native data structures, executes the script, and 
then unmarshals script output back to MQL format. 

To make this possible, scripts need to accept input and generate output in a certain format. 

Details are discussed in the following sections.  

6.1.1 R 

R is a programming language and software environment for statistical computing. The R 
language is widely used among statisticians and data miners for developing statistical software 
and data analysis. 

R is separate software installed on the same or different machine. To use R we invoke R API 
remotely using TCP/IP server for R called RServe. RServe provides TCP/IP interface to R. RSession 
provides a nice API on top of RServe. 



51 Hitachi Ops Center Analyzer detail view Query Language User Guide  

 

6.1.2 Groovy 

Groovy is a powerful, optionally typed and dynamic language, with static-typing and static 
compilation capabilities, for the Java platform. It integrates smoothly with any Java program. It 
seamlessly integrates with all existing Java classes and libraries, and compiles straight to Java 
bytecode so no additional setup is required. Groovy has built-in support in the Analyzer detail 
view.  

6.1.3 Python 

Python is a widely used general-purpose, high-level programming language. Its design 
philosophy emphasizes code readability, and its syntax allows programmers to express concepts 
in fewer lines of code. Python supports multiple programming paradigms, including object-
oriented, imperative, and functional programming or procedural styles. It features a dynamic 
type system and automatic memory management, and has a large and comprehensive standard 
library. 

Marshalling and unmarshalling of objects between Java MQL and Python is supported using 
Thrift Framework.  

6.1.3.1 Thrift framework  
Thrift is an open-source interface definition language and binary communication protocol that is 
used to define and create services for numerous languages. It is used as a remote procedure call 
(RPC) framework and is developed for "scalable cross-language services development.” It 
combines a software stack with a code generation engine to build services that work efficiently 
to a varying degree and seamlessly between many languages. 

6.2 Script filter 
Script filter provides additional syntax to use external scripts from MQL. 

 

Where: 

• Filter Names: This is mandatory for script filter. Also note that it can have multiple 
comma-separated names. This will be used as output data variables which can be 
referenced in subsequent filters. More details will be provided in the following sections.  

• #: Filter type character for script filter. 



52 Hitachi Ops Center Analyzer detail view Query Language User Guide  

 

• tw_ref: Time window reference which should be enclosed in ^.  The value should be the 
time window definition (tw_def), which was added in the preceding filters. This is 
optional. The list of time windows will be made available to the external script. Time 
window reference is available to direct input variables of timeseries data but not for 
referenced data. 

• Data Input: Data input variables that will be passed to the external script. Multiple 
inputs can be passed with comma separation. More details will be given in the following 
sections. 

• !: Script type char is preceded by this special character “!” 
• Script Type: Character to denote the external script type: 

o R – Language R 
o P – Python 
o G – Groovy 

• External Script: External script code. It cannot include new line characters. If it uses any 
square brackets, such as “[ ]”, they should have the matching closing brackets. 

Script filter: data input 

A comma-separated list of input data can be passed to the script. One or more data input is 
mandatory to the script. The following data can be passed to the script: 

• Timeseries data of the resource. This variable must be preceded by @. 
• Scalar data of the resource. This variable must be preceded by =. 
• Data generated by the previous filters. This variable must be preceded by :. 

Example 
h[!tFutureCpuUsage! # @cpuUsage, =cpuCount, :cpuUsageMhz !R script (P1, P2) 
] 

• tFutureCpuUsage: The output generated by the script will be assigned to this variable  
• @cpuUsage: cpuUsage timeseries data of the host will be passed to the script 
• =cpuCount: cpuCount scalar data of the host will be passed to the script  
• :cpuUsageMhz: Referenced input generated by some other filter in the same query 
• !R: “R” external script is used  
• script(P1, P2): R script to be executed with P1 and P2 parameters 

Script filter: data output 

The data generated by the script will be assigned to data output variables. Script can generate 
multiple output data and in such cases, multiple output data variables should be specified as part 
of “Filter Names” in the beginning of the filter, which will be enclosed by the character!. 

The first letter of the output variable will denote the data type of the output data. The following 
is the supported list of output data types: 

• Timeseries data: Output data variable should be prefixed with the letter “t” 
• Vector data (list): Output data variable should be prefixed with the letter “v” 
• Scalar data: Output data variable should be prefixed with the letter “s” 



53 Hitachi Ops Center Analyzer detail view Query Language User Guide  

 

Example 
h[#!tFutureCpuUsage,sAverageCpuUsage! @cpuUsage, =cpuCount !R 
forecastCpuUsage] 

 

• tFutureCpuUsage: Timeseries output data 
• sAverageCpuUsage: Scalar output data 

 

The Script filters can be further classified as: 

• Regular Script Filter: These are applicable to single-level resource data  
• Rollup Script Filter: These are applicable when results from some resources need to be 

aggregated to the parent resource for a low granularity view. 
• Group Script Filter: These are useful when the user needs to create a logical grouping of 

resources by a combination of some resources of the same type. 

6.2.1 Regular external scripts 

Regular script filters are useful in fulfilling requirements when data from resources needs to be 
modified to achieve results at the same level. It works on a single resource type and provides 
output at the same level. 

6.2.1.1 Syntax 
The syntax of the filter is as follows:  

  
The input format and output format for data in scripts are predefined and are language specific. 
The following use case describes the input and output format for regular script in different 
scripting languages. 

6.2.1.2 Use case  
Calculate total IOPS for a resource by cumulating the readIOPS and writeIOPS attribute value 
for a resource. 

  



54 Hitachi Ops Center Analyzer detail view Query Language User Guide  

 

R 

Filter 

 
 

Input 

Data is sent to the R environment (created using Rserve) in the form of lists. Each metric 
can be accessed in a list of its own. These names are available with the name given for 
input variables: pool_readIOPS and pool_writeIOPS. 
 
 The structure of the input list for pool_readIOPS is as follows: 

 
Input data object can be of two types corresponding to both attribute types. Input data 
is classified as timeseriesDataObject for timeseries attributes and scalarDataObject for 
scalar attributes. 

timeseriesDataObject is an RList and the following is the object structure: 
Key Data type Description 

unit Char Unit of measure 
attrId Char Attribute ID 
perfList List List of timeseries 
displayName Char Attribute name 

 
timeseries is an RList and the following is the object structure: 

Key Data type Description 
dataList Vector Vector of double values 
startTime Char Data start time in format “yyyy-MM-dd 

HH:mm:ss” 



55 Hitachi Ops Center Analyzer detail view Query Language User Guide  

 

Key Data type Description 
interval Integer Data interval, in milliseconds 

 
scalarDataObject is an RList and the following is the object structure: 

Key Data type Description 
unit Char Unit of measure 
attrId Char Attribute ID 
data Char Scalar value 
dataType Char Double/String 
displayName Char Attribute name 

Processing 

The following is a sample R script to add two timeseries data inputs. First, it gets 
perfList, which itself is a list containing the actual timeseries, out of data inputs and then 
passes both timeseries lists to a function named function_to_add, which returns a new 
perfList. Users can write their own logic to add two timeseries data inputs in function 
function_to_add. 

 
Output 

In R-based Regular script, output needs to be created as a list object for every output 
with an assigned variable name for each of them (outputs) as specified in Query. 
Structure of the output list is similar to the input list. 



56 Hitachi Ops Center Analyzer detail view Query Language User Guide  

 

 
 
Structure of output RList is as follows: 

  
The following table illustrates object structure of output data, and value type of data 
varies with dataType of the output attribute: 

Key Data type Description 
unit Char Unit of measure 
displayName Char Attribute name 
attrId Char Attribute ID 
dataType Char Data type and possible values are 

Timeseries/Double/String 
data List If output is Timeseries, list of timeseries 

Vector If output is vector, vector of Double/Char 
Double/Char If output is scalar, Double / Char value 

  



57 Hitachi Ops Center Analyzer detail view Query Language User Guide  

 

Groovy 

Filter 

 
Input 

Query engine makes data inputs available inside add_ts.groovy as groovy data 
structures. Data inputs are available with a name given for input variables: 
pool_readIOPS and pool_writeIOPS. 
 
The structure of input list for pool_readIOPS is as follows:

 
 
Each input data is a map and its object structure depends on the attribute type. Input 
data object can be of two types corresponding to both attribute types. Input data is 
classified as timeseriesDataObject for timeseries attributes and scalarDataObject for 
scalar attributes. 
timeseriesDataObject is a map and the following is the object structure: 

Key Data type Description 
unit String Unit of measure 
attrId String Attribute ID 
perfList List List of timeseries 
displayName String Attribute name 

 
timeseries is a map and the following is the object structure: 

Key Data type Description 
dataList List List of double values 
startTime String Data start time in format “yyyy-MM-dd 

HH:mm:ss” 



58 Hitachi Ops Center Analyzer detail view Query Language User Guide  

 

Key Data type Description 
interval Integer Data interval, in milliseconds 

 
scalarDataObject is a map and the following is the object structure: 

Key Data type Description 
unit String Unit of measure 
attrId String Attribute ID 
dataType String Data value type and possible values are 

Double/String 
data Object Data value 
displayName String Attribute name 

 
Processing 

The following is a sample groovy script to add two timeseries data inputs. First, it gets 
perfList, which itself is a list containing the actual timeseries, out of data inputs and then 
passes both timeseries lists to a function named as function_to_add which returns a 
new perfList. Users can write their own logic to add two timeseries data inputs in 
function function_to_add. 

 
Output 

For groovy scripts, an outputMap is created to hold all the output being generated by 
script, where key is the name of the output variable specified in the query, and value is 
the data structure holding actual data output. This output data object has a similar 
structure as input data. 

The following groovy code snippet generates data output for ‘ttotalIOPS’ and adds 
‘ttotalIOPS’ in outputMap: 



59 Hitachi Ops Center Analyzer detail view Query Language User Guide  

 

 Object structure of output data is given below, and the value type of data varies with 
 dataType of the output attribute: 

Key Data type Description 
unit String Unit of measure 
displayName String Attribute name 
attrId String Attribute ID 
dataType String Data type and possible values are 

Timeseries/Double/String 
data List If output is Timeseries, list of timeseries 

List If output is vector, list of Double/String 
Object If output is scalar, data value 

Python 

Filter 

 
Input 

For Python scripts, inputs are thrift-implemented objects, and these thrift stub objects 
can be used to retrieve data in Python, process them, and send back the script output. 
The user needs to fetch data from these thrift objects and generate script outputs as 
thrift objects. 



60 Hitachi Ops Center Analyzer detail view Query Language User Guide  

 

Inputs for regular scripts are objects of ThriftPerfData. Following is the object structure 
of ThriftPerfData: 

Key Type Description 

unit String Unit for timeseries data 

displayName String Display name of timeseries data 

perfList List List of ThriftEPerfData objects. 

ThriftEPerfData contains data series, interval, and start time. Following is object 
structure of ThriftEPerfData: 

Attributes Type Description 

dataList List List of double values  

startTime String Start time of data in format “yyyy-MM-dd HH:mm:ss” 

interval Long Data interval, in milliseconds 

Data inputs to script are available with the input variable name specified in the query: 
pool_readIOPS and pool_writeIOPS 

Processing 

Starting point for script execution is execute method, and input data is available through 
its argument. 

The following is a sample Python script to add two timeseries data inputs. First, it gets 
perfList, which itself is a list containing the actual timeseries, out of data inputs and then 
passes both timeseries lists to a function named as function_to_add, which returns a 
new perfList. Users can write their own logic to add two timeseries data inputs in 
function function_to_add. 



61 Hitachi Ops Center Analyzer detail view Query Language User Guide  

 

 
Output 

Execute method returns a dictionary having output data corresponding to output 
variable name, tTotalIOPS. The following tables describe output data type based on data 
type mentioned in the data output variable: 

If data type is Output object type 

Timeseries ThriftPerfData 

Scalar ThriftDoubleScalar/ThriftStringScalar 

vector ThriftDoubleVector/ThriftStringVector 

ThriftPerfData contains the timeseries data of an attribute. It is explained in the input 
section. 

ThriftDoubleScalar contains the attribute unit, attribute’s display name, and data. The 
following is the object structure of ThirftDoubleScalar. 

Key Type Description 

unit String Unit for scalar data 

displayName String Display name of scalar data 



62 Hitachi Ops Center Analyzer detail view Query Language User Guide  

 

Key Type Description 

data Double Double scalar value 

ThriftStringScalar contains the attribute unit, attribute’s display name, and data. Object 
structure of ThriftStringScalar is similar to ThriftDoubleScalar where the type of data is 
different. The following is its object structure: 

Key Type Description 

unit String Unit for scalar data 

displayName String Display name of scalar data 

data String String scalar value 

ThriftDoubleVector contains the attribute unit, attribute’s display name, and data. The 
following is the object structure: 

Key Type Description 

unit String Unit for scalar data 

displayName String Display name of scalar data 

data List Double data vector 

ThriftStringVector contains the attribute unit, attribute’s display name, and data. Object 
structure of ThriftStringVector is similar to ThriftDoubleVector where the type of data is 
different. The following is its object structure: 

Key Type Description 

unit String Unit for scalar data 

displayName String Display name of scalar data 

data List String data vector 

The following Python script snippet prepares output data and adds output data in the out 
dictionary. 



63 Hitachi Ops Center Analyzer detail view Query Language User Guide  

 

 

6.2.2 Rollup external scripts 

Rollup external scripts are useful when the requirement is to pull data from related resources 
and use them to generate results at the parent level resource. Rolling up of data allows the user 
to analyze data at low granularity. 

6.2.2.1 Syntax  
The syntax of the filter is as follows: 

 

Where: 

#+: The + symbol specifies that it is a rollup filter. 

6.2.2.2 Use case 
Utilization from all related raidMPs needs to be aggregated at the parent MPB resource. 

R 

Filter 

[*#+!<Filter Names>! ^tw_ref^ <Data Input> !<Script Type> <External Script>] 

Filter names 
enclosed in ! 

Filter parameters 

Filter type char 

Time window 
markers 

Output variables Script type char  #+ for Rollup filter 



64 Hitachi Ops Center Analyzer detail view Query Language User Guide  

 

 
Input 

In the case of a resource rollup, the input RList named as inputResourceGroup will 
consist of multiple lists, each containing the data of a single resource. These individual 
lists will be named in accordance with the resource they represent, thereby making 
identification easy.  

The following is the structure of a sample list of this kind: 

 
RList for each resource would have data corresponding to input variable names 
specified in the query filter. In addition to the object structure explained in the input 
section of regular scripts, this list also contains two character objects specifying the 
resource ID and type. The following table describes the object structure for a resource. 

Key Data type Description 

id Char Resource signature (Resource Unique 
Identifier) 

type Char Resource type 



65 Hitachi Ops Center Analyzer detail view Query Language User Guide  

 

<attributeId>:Scalar List scalarDataObject 

<attributeId>:Timeseries List timeseriesDataObject 

 

Processing 

The following is a sample R script to add two timeseries data inputs. First, it gets the two 
timeseries, one each for a resource, out of data inputs and then passes them both to a 
function named as function_to_add, which returns a new timeseries. Users can write 
their own logic to add two timeseries data inputs in function function_to_add. 

 

  
Output 

Rollup script output in R is RList, similar to Regular R script output. 
The following is an R script snippet to generate timeseries data output: 

 



66 Hitachi Ops Center Analyzer detail view Query Language User Guide  

 

The following is the sample output structure for timeseries attribute utilization: 

 

Groovy 

Filter
 

 
Input 

In the case of rollup scripts, the Query engine makes available a special map 
(inputResourceGroup) to groovy scripts. inputResourceGroup holds the list of all the 
related resource information, where resource information contains the resource 
signature and the attribute’s data specified in the filter. 



67 Hitachi Ops Center Analyzer detail view Query Language User Guide  

 

InputResourceGroup is a map holding resource information corresponding to the 
resource signature. The following is the object of inputResourceGroup:

 
The object holding resource information is also a map and contains the resource 
signature corresponding to key ‘id’ and attribute data corresponding to the attribute ID. 

The attribute data object depends on the attribute type, and type is suffixed in the key 
itself. The following table describes the object structure for a resource. 

 

Key Data type Description 

id String Resource signature (Resource Unique 
Identifier) 

<attributeId>_Scalar Map scalarDataObject 

<attributeId>_Timeseries Map timeseriesDataObject 

scalarDataObject and timeseriesDataObject are already explained for regular script 
input. 

Processing 

The following is a sample groovy script to roll up resource data to the parent level 
resource. The script iterates over InputResourceGroup to get each resource. Then it gets 
timeseries out of each resource and performs an operation to consolidate them. Users 
can write their own logic to consolidate timeseries data inputs.  



68 Hitachi Ops Center Analyzer detail view Query Language User Guide  

 

 
 Output 

The following is a sample groovy code to generate output tmpbUtilization and add 
tmpbUtilization in outputMap: 

 
 
The following is a sample output showing object structure of outputMap having 
tmpbUtilization: 

 
Object structure of output data is similar to regular script.  



69 Hitachi Ops Center Analyzer detail view Query Language User Guide  

 

Python 

Filter 

 
Input 

In the case of rollup script, input to Python script is the list of ThriftResourceInput, which 
is available through InputResourceGroup.  

ThriftResourceInput represents a resource in Python and the following is the object 
structure: 

Keys Type Description 

signature String Unique signature of resource 

type String Resource type 

perfMap Dictionary<String, 
ThriftPerfData> 

Dictionary that stores timeseries data 
for an attribute as ThriftEPerfData 

doubleScalarMap Dictionary<String, 
ThriftDoubleScalar> 

Dictionary that stores double scalar data 
for resource as ThriftDoubleScalar 

stringScalarMap Dictionary<String, 
ThriftStringScalar> 

Dictionary that stores string scalar data 
for resource as ThriftStringScalar 

doubleVectorMap Dictionary<String, 
ThriftDoubleVector> 

Dictionary that stores double vector 
data for resource as ThriftDoubleVector 

stringVectorMap Dictionary<String, 
ThriftStringVector> 

Dictionary that stores string vector data 
for resource as ThriftStringVector 

In this example, each MP resource will be depicted as ThriftResourceInput in Python 
script. 

Processing 

The following is a sample Python script to roll up resource data to the parent level 
resource. The script iterates over InputResourceGroup to get each resource. Then it gets 
timeseries out of each resource and performs an operation to consolidate them. Users 
can write their own logic to consolidate timeseries data inputs. 



70 Hitachi Ops Center Analyzer detail view Query Language User Guide  

 

 
Output 

The following is a sample Python code to add output data into the ‘out’ dictionary 
corresponding to key tmpbUtilization. 

 
Output for rollup scripts is the same as regular script output. 

6.2.3 Group external scripts 

This script filter allows the user to create their own logical resources by combining multiple 
resources of the same type into groups. This gives the user flexibility to analyze data on resource 
sets without having to aggregate them or rolling up to their parents. It logically groups the 
resources based on some criteria. Group filter should be defined as the first filter in the path, 
and it should be defined in the first path only. There can be only one group filter in a given path. 

6.2.3.1 Syntax 
The syntax of the filter is as follows: 

 
Where: 

• #: Denotes that this is a group filter. Group filter should be the first filter in that level and 
only one is allowed in a query. 

#<Logical Resource Type>[*#!<Filter Names>! <Data Input> !<Script Type> <External Script>] 

Filter names enclosed in ! Filter parameters 

Filter type char Output variables Script type char 

Group resource type 



71 Hitachi Ops Center Analyzer detail view Query Language User Guide  

 

• Logical Resource Type: Resource type of the generated group. Alphanumeric and 
underscores are valid. 

• Filter Names: Optional. These will be used if this filter generates other outputs in addition to 
creation of logical group resources. 

• Data Input: The direct input variables should be preceded with @ for timeseries data and = 
for scalar data. Data should belong to only one type of resource. The input data variable 
should be prefixed with resource type (e.g, @h:cpuUsage). The resource signature will be 
passed implicitly. 

6.2.3.2 Use case 
     Create a group of LDEV resources based on their owners and find utilization for each group. 

R 

Filter 

 
Input 

In case of a group rollup, the input list in R will consist of multiple lists, each containing 
the data of a single resource. These individual lists will be named in accordance with the 
resource they represent thereby making identification easy. In addition, a mapping of 
individual resources to groups may be provided in the form of a file wherein the path to 
this file will be available in the R environment as an object with the name specified in 
the query (‘groupFile’ in the query above). 

The section enclosed in ‘(‘and ‘)’ is known as additional script inputs and can be 
provided to regular, rollup, and group scripts wherever applicable. It should be a Key 
Value pair. Multiple additional scripts can be provided to the script using the separator –
‘,’. 

The following is the object structure of a sample list of this type: 



72 Hitachi Ops Center Analyzer detail view Query Language User Guide  

 

 
Processing 

Rolling up using a resource-group mapping can be done in two steps. In the first step, 
either define the mapping manually in the R environment or read it from a file whose 
path is available in the variable ‘groupFile’. R provides a construct called factor that 
allows this kind of grouping and makes it convenient to perform operations across these 
groups.  

Once the resources are split by group, pass resources of each group to a function that 
aggregates input data for them. 



73 Hitachi Ops Center Analyzer detail view Query Language User Guide  

 

 
Output 

Output for the group script filter is an RList named ‘outputResourceGroup’ comprised of 
logical resources. These logical resources are RList having ID, type, list of constituting 
resources, and other timeseries, scalar, or vector output created by the script. 

The following is a sample R pseudo-code to create logical resources and associated data 
from input resource data. 



74 Hitachi Ops Center Analyzer detail view Query Language User Guide  

 

 
 

Key Data type Description 
id Char Unique identifier for logical resource 
resourceList List List of related resource signatures 
<output 
variable name> 

List Attribute output data as explained in regular 
script output. 

type Char Resource type of logical group 

The following is a sample output for a group script: 



75 Hitachi Ops Center Analyzer detail view Query Language User Guide  

 

 

Groovy 

Filter 

 
Input 

In case of a group rollup, the input in groovy is a map ‘InputResourceGroup’. 
inputResourceGroup contains multiple resources corresponding to the key having its 
resource signature. In addition, a mapping of individual resources to groups can be 
provided in the form of a file wherein the path to this file will be available in the groovy 
environment as an object with the name specified in the query (‘groupFile’ in the query 
above). 

Each resource holds resource signature as id and attribute’s data corresponding to input 
variable name (attributeId_type). Object structure of inputResourceGroup is the same 
as rollup script inputs. 

 



76 Hitachi Ops Center Analyzer detail view Query Language User Guide  

 

Processing 

Rolling up using a resource-group mapping can be done in two steps. In the first step, 
either define the mapping manually in the groovy environment or read it from a file 
whose path is available in the variable ‘groupFile’. The script provides mapping in the 
form of a map, which is used to aggregate resources across these groups. 

Once the resources are split by group, pass resources of each group to a function that 
aggregates timeseries for them. 

 
Output 

The output list structure for group script is slightly different. A special list, 
outputResourceGroup, needs to be created in groovy script to return output. 
outputResourceGroup contains all group resources and each resource consists of id, 
type, reosurceList, and the attribute’s data. 

The following is a sample groovy script to prepare owner utilization and to add owner 
utilization into outputResourceGroup. 

The script prepares group utilization and adds the group resource into resMap. The 
group resource contains id, type, tgrputilization, and resourceList containing related 
resources. It adds resMap into outputResourceGroup. 



77 Hitachi Ops Center Analyzer detail view Query Language User Guide  

 

 
The following is a sample output of outputResourceGroup: 

outputResourceGroup is a list containing group resources and each group resource is 
also represented as a map. The following is the object structure of a resource: 
 

Key Data type Description 
id String Unique identifier for logical resource 
resourceList List List of related resource signatures 



78 Hitachi Ops Center Analyzer detail view Query Language User Guide  

 

Key Data type Description 
<output 
variable name> 

Map Attribute output data. It is explained in regular 
script output. 

type String Resource type of logical group 

Python 

Filter 

 
Input 

In case of group script, input to Python script is the list of ThriftResourceInput. Object 
structure for ThriftResourceInput is already explained in the rollup script. 

In this example, Each ThriftResourceInput Object in input represents one LDEV object. 
Processing  

Rolling up using a resource-group mapping can be done in two steps. In the first step, 
either define the mapping manually in the Python environment or read it from a file 
whose path is available in the variable ‘groupFile’. 

Once the resources are split by group, script aggregates timeseries of all resources 
belonging to one group. 

 
Output 

Below is a sample Python script to create a group resource and to add the logical 
resource in the out dictionary. 



79 Hitachi Ops Center Analyzer detail view Query Language User Guide  

 

 
For logical grouping, Python script is expected to return the list of ThriftResourceGroup 
objects. Each ThriftResourceGroup object represents a logical resource created in Python 
where name, type, and list of contained resources are mandatory. 

Object structure of ThriftResourceGroup: 

Key Type Description 

Type String Logical resource type 

name String Logical resource name 

resourceSignatureList List<String> List of resource signatures in Logical 
Resource  

perfMap* Dictionary<String, 
ThriftPerfData> 

attributeId -> ThriftEPerfData objects 
to store timeseries data for resource 

doubleScalarMap* Dictionary<String, 
ThriftDoubleScalar> 

attributeId -> ThriftDoubleScalar 
objects to store double scalar data for 
resource 

stringScalarMap* Dictionary<String, 
ThriftStringScalar> 

attributeId -> ThriftStringScalar 
objects to store string scalar data for 
resource 

doubleVectorMap* Dictionary<String, 
ThriftDoubleVector> 

attributeId -> ThriftDoubleVector 
objects to store double vector data for 
resource 

stringVectorMap* Dictionary<String, 
ThriftStringVector> 

attributeId -> ThriftStringVector 
objects to store string vector data for 
resource 

* represents optional parameter 

 



80 Hitachi Ops Center Analyzer detail view Query Language User Guide  

 

7 Advanced features 
7.1 Query Join 

This feature allows MQL to relate disjoint resources by allowing the user to query resources, 
which do not have relation specified in the DB usually based on some scalar attribute. 

Users may want to correlate few resources and view the entire or part of the infrastructure. 
However, data or resource to compose this view might come from different data subsets, and 
there might be cases where these resources from different data subsets do not have relation 
specified amongst them. In this case, these resources would be disjoint. 

However, logically such resources can be related to each other in the real world but due to lack 
of relation specification in the Analyzer detail view DB, the query won’t be able to fetch these 
resources. The Query Join feature overcomes this limitation by allowing the user to query 
resources, which do not have relation specified in the DB. 

7.1.1 Syntax 

R1/^R2 

Where R1 and R2 do not have direct relation in the Analyzer detail view DB. 

In this query, all R2 resources will be returned as related resource for each R1 resource.  

**This is not a general use-case. 

 

R1[=!ref!scalarAttr1 rx <regex>]/^R2[=scalarAttr2 rx :ref] 

Where  ‘R2’ is  unrelated to ‘R1’.  

R2 will be filtered for having same scalarAttr2 as R1’s scalarAttr1 attribute. 

  



81 Hitachi Ops Center Analyzer detail view Query Language User Guide  

 

The following table describes query filter options applicable to Query Join: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In addition to basic filtering based on scalar attribute regex matching, some extra processing 
may be required. Here are few such syntaxes. 

It is possible that values for scalar attributes at R1 and R2 have similar but not exactly same 
values. For example, the case (uppercase/lowercase letters) of these values can be different. In 
this scenario, we need to compare while ignoring case. This can be achieved with the following 
query syntax. 

R1[=!ref!scalarAttr1 rx <regex>]/^R2[=scalarAttr2 rx (?i) :ref] 

Query filter options Descriptions Valid values 

trType Specifies the transformation type that the 
matching pattern would undergo before 
application 

c2c/r2s 

where,  

c2c is character to 
character 
transformation 

r2s is regex to String 
transformation. 

trFrom In case of trType c2c, it represents a list of 
characters, which will be replaced by 
corresponding character in trTo 
parameter or null (if no corresponding 
character is found) 

In case of trType r2s, it represents a regex 
pattern to be replaced by string in trTo for 
all occurances in input. 

It should be enclosed in double quotes 
(“”). 

List of characters, if 
trType = c2c 

Regex Pattern, if trType 
= r2s 

trTo In case of trType c2c, it represents a list of 
characters with which corresponding 
character of trFrom will be replaced. It is 
an optional parameter. In this case, the 
characters in trFrom will be completely 
removed from input.  

In case of trType r2s, it represents a string, 
which relpaces all the occurances of text 
matching regex specified in trFrom. 

It should be enclosed in double quotes 
(“”). 

List of characters, if 
trType = c2c. 

Text string, if 
trType=r2s 



82 Hitachi Ops Center Analyzer detail view Query Language User Guide  

 

The value of scalarAttr2 for R2 will undergo transformation before being matched with the 
scalar attribute value from R1.  

trType=c2c specifies that the scalarAttr2 value needs to go with character to character 
transformation. This can be achieved with the following query syntax. 

R1[=!ref!scalarAttr1 rx <regex>]/^R2[=scalarAttr2 rx :ref] { 
trType=c2c,trFrom=”:”,trTo=”.”} 

trFrom can take a list of characters and replace each one of them with the corresponding 
index character from trTo before matching. In above example ‘:’ will be replaced by ‘.’ 
before matching scalarAttr2 value with scalarAttr1. 

If no corresponding character is found for replacement in the target then the character is 
replaced by null. 

R1[=!ref!scalarAttr1 rx <regex>]/^R2[=scalarAttr2 rx :ref] { 
trType=r2s,trFrom=”netApp_”,trTo=”x”} 

Another value for trType is r2s, in which case a regex is specified in trFrom and that is 
replaced by the string mentioned in trTo before matching. 

7.1.2 Use case 

The Analyzer detail view database may have switch and storage data, which are not related 
explicitly in the DB. However, they may be related in the real world. Therefore, to find this 
relation, you can use scalar attribute values from resources of these two data subsets.  

Let’s say the WWN value from RaidPort from storage and fabCiscoEndPort of switch are the 
same.  

• Then the user may exploit the commonality of this value to deduce a relationship 
between switch and storage data as shown in following query: 

fabCiscoEndPort[=!ref!wwn rx .*]/^raidPort[=wwn rx :ref] 

This query will return all raidPorts having the same WWN value as of end port as its 
related resource. 

• It might also be possible that values of scalar attribute are not exactly the same. 
However similar, in such case, the user may use filter options to modify values to match 
before they are matched. 

For example: 

fabCiscoEndPort[=!ref!wwn rx .*]/^raidPort[=wwn rx 
:ref]{trType=c2c,trFrom=”.”,trTo=”:”} 

The above query will match the raidPort WWN value with the endPort WWN value after 
substituting . (dot) with : (colon) in the endPort WWN value. 

• The user may also use regex replacement if required, as displayed in following example: 



83 Hitachi Ops Center Analyzer detail view Query Language User Guide  

 

fabCiscoEndPort[=!ref!wwn rx .*]/^raidPort[=wwn rx 
:ref]{trType=r2s,trFrom=”\s”,trTo=”:”} 

This query will replace all white space with colon from the end port WWN value before 
matching it with the RAID port’s WWN value. 

7.2 Synthetic attribute 
Synthetic attributes are computed/synthesized on the server by aggregating data from other 
attributes present in the server DB. 

Synthetic Attributes do not have their corresponding data stored directly in the server DB. Their 
value is computed by applying aggregations on data present for other metrics in the server DB. 

Synthetic Attribute definitions are defined in AttributeDef.xml. When queried for such metric, 
MQL will expand internally using the definition specified in XML to aggregate, and produce the 
expected result. 

7.2.1 Syntax 

7.2.1.1 Definition 
One can define Synthetic Attribute in AttributeDef.xml as in the following example: 

<AttributeDef id="<newAttrId>" name="<Display Name>” type="timeseries" unit="<unit>” 
synthetic="true” outInterval=”<outputInterval>” inputInterval=”<input Interval>”  
intervalRollupOp=<op> resourceRollupOp="<op>" derivedAttrOp=”<op>”  counterList="<input 
counter list>" resPath="<relation path>"/> 

 Where, 

XML Attribute Description 

id Unique identifier for the attribute 

name Display name for the attribute 

type Attribute type, valid values are scalar and timeseries. However, 
currently synthetic attributes are supported only for the timeseries 
attribute. 

unit Unit for the attribute 

synthetic This XML attribute should be true to specify that this definition is for 
synthetic attributes 

outInterval Parameter to specify the Output timeseries interval, in seconds; it 
should be used for interval rollup 



84 Hitachi Ops Center Analyzer detail view Query Language User Guide  

 

XML Attribute Description 

inputInterval Optional parameter to specify if any particular interval data layer should 
be used for aggregations 

intervalRollupOp Parameter to specify which operation should be used for interval rollup 
, valid values are SUM/AVG/MIN/MAX 

resourceRollupOp Parameter to specify which operation should be used for resource 
rollup; valid values are SUM/AVG/MIN/MAX/weightedAvg 

derivedAttrOp Parameter to specify which operation should be used for derived 
attribute; valid values are SUM/AVG/DIFF/weightedAvg 

counterList Comma-separated list of counters that are collected directly by probe 
on which operations need to be performed to get the desired output 

resPath Optional parameter to specify the relational path (with filters, if 
required) to the resource at which counters specified in counterList are 
available. 

7.2.1.2 Usage 
The user can use the Synthetic Attribute as any other static attribute definition in a query. For 
example: 

R1[@<synAttrId> rx b .*] 

The above query when executed will look up the synAttrId definition and will then internally 
expand to evaluate the metric value based on configurations specified in its definition. 

7.2.2 Use case 
Synthetic Attribute for interval rollup 

AttributeDef id="cpuUsage_rolledUp" name="CPU Usage – 1 hr" 
type="timeseries" unit="Percent" synthetic="true" outInterval="3600" 
inputInterval="60" intervalRollupOp="AVG" counterList="cpuUsage”/> 

 
Synthetic Attribute for derived attribute 

AttributeDef id="writeIOPS" name="Write IOPS" type="timeseries" unit="KBps" 
synthetic="true" derivedAttrOp="DIFF" counterList="totalIOPS,readIOPS"/> 

 
Synthetic Attribute for resource rollup 



85 Hitachi Ops Center Analyzer detail view Query Language User Guide  

 

AttributeDef id="totalIOPS" name="Total IOPS" type="timeseries" unit="KBps" 
synthetic="true" resourceRollupOp="SUM" counterList="totalIOPS" 
resPath="raidLdev"/> 

 
Synthetic Attribute for interval rollup + derived attribute + resource rollup 

AttributeDef id="totalIOPS" name="Total IOPS" type="timeseries" unit="KBps" 
synthetic="true" derivedAttrOp="SUM" outInterval="3600" 
intervalRollupOp="SUM" resourceRollupOp="SUM" 
counterList="writeIOPS,readIOPS" resPath="raidLdev"/> 

 

 

8 Appendix 
1. To execute R scripts from MQL, there are certain prerequisites: 

• R must be installed on Host system. 
• Rserve instances should be running either locally or remotely on an accessible host.  
• Rserve Library should be installed on Host where R server needs to be running. User can 

start Rserve instance locally using this command: 

Rserve(port=6311, args=\"--no-save --RS-conf    
/usr/local/megha/ExternalScript/R/Rserv.cfg\") 

• Following properties need to be configured in ext.script.properties: 
o ext.script.R.Home – set to the installed location of R on host machine. 
o ext.script.R.server.count – number of R servers running to process MQL 

Requests. 
o ext.script.R.<count>.hostname – host on which R server is running. 
o ext.script.R.<count>.port – port on which R server is listening at 

ext.script.R.<count>.hostname Host. 
2. Scripts are executed on Groovy interfaces and certain such interfaces are pooled in Analyzer 

detail view for faster execution. Number of pooled Groovy interfaces can be configured from 
the property ‘ext.script.groovy.instance.count’ in ext.script.properties under the conf/sys folder.  

Since the groovy script runs on JVM, if the number of parallel requests for groovy script 
execution increases the limit of the pooled groovy interface count, a new groovy interface is 
spawned. However, these new interfaces are not added back to the interface pool. 

3. To use Python scripts from MQL, there are certain prerequisites: 

• Python should be installed on Host. 
• Thrift should be installed on Host. This can be done as explained in the following steps. 

o pushd /usr/local/megha/ExternalScript/Thrift/ 
o unzip thrift.zip 



86 Hitachi Ops Center Analyzer detail view Query Language User Guide  

 

o pushd ./thrift*/ 
o python setup.py install 
o Popd 
o Popd 

• Python Thrift server should be running on ports and interfaces that should be 
configured in ext.script.properties 
o Starting Python server: 

python 
/usr/local/megha/ExternalScript/Thrift/py_impl/PythonS
erver.py <ipaddr> <port> 

• Configure setting in ext.script.properties: 
o Set ext.script.P.server.count, i.e., number of Python Thrift servers available to 

process request. 
o Set hostname and port for all Python servers by setting properties: 

— ext.script.P.<count>.hostname – IP Address of host where Thrift server is 
running 

o ext.script.P.<count>.port- Port on which Thrift server is listening for request on 
specified (ext.script.P.<count>.hostname) host. 



Corporate Headquarters 
2845 Lafayette Street 
Santa Clara, CA 95050-2639 USA 
www.HitachiVantara.com | community.HitachiVantara.com 

Regional Contact Information 
Americas: +1 866 374 5822 or info@hitachivantara.com 
Europe, Middle East, and Africa: +44 (0) 1753 618000 or info@emea@hitachivantara.com 
Asia Pacific: + 852 3189 7900 or info.marketing.apac@hitachivantara.com 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Hitachi Vantara Corporation 


	1 Preface
	1.1 Product version
	1.2 Intended audience
	1.3 Accessing product documentation
	1.4 Getting help
	1.5 Comments

	2 Analyzer detail view query language
	3 Query language specification
	3.1 Terminology
	3.1.1  Overview
	3.1.2  Query structure
	3.1.3  Resource filters
	3.1.4  Attribute filters
	3.1.4.1 Scalar filters
	3.1.4.2 Timeseries filters
	3.1.4.2.1 Time windows
	3.1.4.2.2 Subsequence filtering
	3.1.4.2.3 Scalar attribute as timeseries




	4 Query language BNF
	4.1 Query statement
	4.2 Scalar filter
	4.3 Timeseries filter
	4.3.1 Timeseries filter expression

	4.4 Subsequence filter
	4.5 Non-terminals
	4.6 Limitations

	5 Advanced data processing functions
	5.1 Query options
	5.1.1 Query global options
	5.1.2 Query filter options

	5.2 Interval Rollup
	5.2.1 Syntax
	5.2.2 Supported operations
	5.2.3 Use case 1
	5.2.4 Use case 2

	5.3 Derived attributes
	5.3.1 Syntax
	5.3.2 Supported operations
	5.3.3 Use case

	5.4 Resource Rollup
	5.4.1 Syntax
	5.4.1.1 Resource filtering

	5.4.2 Supported operations
	5.4.3 Use case

	5.5 preProc
	5.5.1 Syntax
	5.5.2 Use case


	6 External scripts
	6.1 Supported scripting languages
	6.1.1 R
	6.1.2 Groovy
	6.1.3 Python
	6.1.3.1 Thrift framework


	6.2 Script filter
	6.2.1 Regular external scripts
	6.2.1.1 Syntax
	6.2.1.2 Use case
	R
	Groovy
	Python


	6.2.2 Rollup external scripts
	6.2.2.1 Syntax
	6.2.2.2 Use case
	R
	Groovy
	Python


	6.2.3 Group external scripts
	6.2.3.1 Syntax
	6.2.3.2 Use case
	R
	Groovy
	Python




	7 Advanced features
	7.1 Query Join
	7.1.1 Syntax
	7.1.2 Use case

	7.2 Synthetic attribute
	7.2.1 Syntax
	7.2.1.1 Definition
	7.2.1.2 Usage

	7.2.2 Use case


	8 Appendix



