HITACHI

Inspire the MNext

Hitachi Ops Center

Automator
10.8.3

Service Builder User Guide

This manual describes how to use Ops Center Automator Service Builder. Service Builder enables you to
create and manage the service templates and associated plug-ins for automating data center tasks.

MK-99AUT002-13
July 2022

© 2019, 2022 Hitachi, Ltd. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including copying and recording,
or stored in a database or retrieval system for commercial purposes without the express written permission of Hitachi, Ltd., or Hitachi Vantara LLC
(collectively “Hitachi”). Licensee may make copies of the Materials provided that any such copy is: (i) created as an essential step in utilization of the
Software as licensed and is used in no other manner; or (ii) used for archival purposes. Licensee may not make any other copies of the Materials.
“Materials” mean text, data, photographs, graphics, audio, video and documents.

Hitachi reserves the right to make changes to this Material at any time without notice and assumes no responsibility for its use. The Materials contain
the most current information available at the time of publication.

Some of the features described in the Materials might not be currently available. Refer to the most recent product announcement for information about
feature and product availability, or contact Hitachi Vantara LLC at https://support.hitachivantara.com/en_us/contact-us.html.

Notice: Hitachi products and services can be ordered only under the terms and conditions of the applicable Hitachi agreements. The use of Hitachi
products is governed by the terms of your agreements with Hitachi Vantara LLC.

By using this software, you agree that you are responsible for:
1. Acquiring the relevant consents as may be required under local privacy laws or otherwise from authorized employees and other individuals; and
2. Verifying that your data continues to be held, retrieved, deleted, or otherwise processed in accordance with relevant laws.
Notice on Export Controls. The technical data and technology inherent in this Document may be subject to U.S. export control laws, including the
U.S. Export Administration Act and its associated regulations, and may be subject to export or import regulations in other countries. Reader agrees to

comply strictly with all such regulations and acknowledges that Reader has the responsibility to obtain licenses to export, re-export, or import the
Document and any Compliant Products.

Hitachi and Lumada are trademarks or registered trademarks of Hitachi, Ltd., in the United States and other countries.

AIX, AS/400e, DB2, Domino, DS6000, DS8000, Enterprise Storage Server, eServer, FICON, FlashCopy, GDPS, HyperSwap, IBM, Lotus, MVS, OS/
390, PowerHA, PowerPC, RS/6000, S/390, System z9, System z10, Tivoli, z/OS, z9, z10, z13, z14, z/VM, and z/VVSE are registered trademarks or
trademarks of International Business Machines Corporation.

Active Directory, ActiveX, Bing, Edge, Excel, Hyper-V, Internet Explorer, the Internet Explorer logo, Microsoft, the Microsoft corporate logo, the
Microsoft Edge logo, MS-DOS, Outlook, PowerPoint, SharePoint, Silverlight, SmartScreen, SQL Server, Visual Basic, Visual C++, Visual Studio,
Windows, the Windows logo, Windows Azure, Windows PowerShell, Windows Server, the Windows start button, and Windows Vista are registered
trademarks or trademarks of Microsoft Corporation. Microsoft product screen shots are reprinted with permission from Microsoft Corporation.

All other trademarks, service marks, and company names in this document or website are properties of their respective owners.

Copyright and license information for third-party and open source software used in Hitachi Vantara products can be found in the product
documentation, at https://www.hitachivantara.com/en-us/company/legal.html or https://knowledge.hitachivantara.com/Documents/
Open_Source_Software.

Hitachi Ops Center Automator Service Builder User Guide 2

https://support.hitachivantara.com/en_us/contact-us.html
https://www.hitachivantara.com/en-us/company/legal.html
https://knowledge.hitachivantara.com/Documents/Open_Source_Software
https://knowledge.hitachivantara.com/Documents/Open_Source_Software

Contents

Preface. ... e 7
Intended QUAIENCE.........ouiiee e 7
(o To [F o ARV 7=Y =1 o] o PSPPSRI 7
REIEASE NOTES......eeeeeie e e e e e e e e e e e ee e eaannne 7
Referenced dOCUMENTS.........oooiiiii i 7
Document CONVENTIONS...........uiiiiiiiiiiie e e e e e aaees 7
Conventions for storage capacity Values.............cccuuiiiiiiiiiiiiiiiiie e 9
Accessing product documentation................coiiiiiiiiii e 10
GEttNG NEIP .t 10
(707 2910 0 T=T o £ 10

Chapter 1: Overview of Automator Service Builderccoooveeeeennnnn. 11
ADbOUL SErvice BUIIAEN e 11
Terms and CONCEPLScoovuuie e e e e e e e e e e e e e e aeeeees 13
ACCESS ServiCe BUIIAET..........ooeeeiiiicie e 16
Navigate the interface ... 16
Getting Started tiPS ...ovvveeeciiiee e 21

Chapter 2: Working with existing service templates..........ccccccooeevieennnnnin. 22
Service template OVEIVIEWciiieiiiiiiicceeeeeeeee e 22
Manage existing service templates.............oouuueiiiiii 23

Viewing a service template ... 23
Copying a service templateccooooiiiiiiiiiicce e 23
Copy Service Template dialog DOX..........ccccuiiiiiiiiiiiiiiiieeeee e 24
Editing a service template.............ooooiiiiiii 24
Deleting a service templateoooiiiiiiiiii e 25
Importing a service template ... 25
Import Service Template Package dialog bOX...........ccooeveiiiiiiiiiiiis 26
Exporting a service templateccooooriiii i 26

Chapter 3: Working with existing plug-ins.........cccoovviiiiiiiiiiie e, 28
PIUG-INS OVEIVIEW ...t e et e e e e e e e e e eennaaas 28
Custom Plug-in List dialog DOX.........uuuuiiiiiiiiiiiiiiiiiiieee e 29
Manage exiSting PIUG-INS........oooiiiiiiie e 29

CopYiNg @ PIUG-IN.....cooiiiieee e ————— 29
Contents

Hitachi Ops Center Automator Service Builder User Guide 3

Editing @ PIUG-iN oeeee e 30

Copy Custom Plug-in dialog DOX.......ccooviiiiiiiiiiciieieee e 30
Deleting @ Plug-iN... ... e 33
Chapter 4: Creating a new service template..........c.cccoooviiiiiiiiiin, 35
Service template creation Workflow ..., 35
Creating a new service templateooooemmiiiiiiiii 37
Create Service Template dialog DOX..........ooooiiiiiiiiiiis 37
SpecCify the Step fIOWooovmiee e 38
Creating the stepsinadata flowooooviimiiiiiiii 39
Create/Edit Step dialog DOX......ccvvviiiiiiiiiiii e 40
Specifying step Properties ... 42
Specify Component Input/Output Property Mapping Parameters dialog
070)PP UPEUPPRPPR 44
Establishing the flow of executioncccuviiiiiiiie 45
Creating a flow hi€rarChy ... 46
Creating a Next Step conditional branch inaflowcccccvieieei 48
Specify Execution Condition dialog DOX............cooooiiiiiiiiiiiiiiieeee 49
Specify the property Settings ..o 52
Selecting the service share propertiescccovviiiiiiiiiciciie e, 53
Select Service Share Property dialog bOX..........coooooiiiiiiiiiiiiiiiiiie 53
Select Reference Property dialog DOX........ccvvvviiiiiiiiiiiiie 54
Adding INPUL PrOPEITIEScovvviiieieeiie e e 56
Create/Edit Input Property for Service dialog boX.............vvciiiiiiiieiiiinnnnnne. 56
Create/Edit Domain Type Definition dialog boX............cccooiiiiiiiiiiiiii 69
Adding OUtPUL PropPerties.oouuuiiiiiiiiiie e 74
Create/Edit Output Property for Service dialog boX...........cccovvvvvviiiiiiinnnnnnnn. 74
AddiNg VariabIEs...........ooiiiiiiii s 76
Create/Edit Variable dialog DOX........cccooeeeiiiiiiiiccee e 77
Example of creating a new service template..............ccoeeieriiiiicciiiie, 78
Making a copy of an existing service template............ccccocon. 79
Adding email notification for the service template..............ccccceeeeeeei, 80
Debugging, building, testing, and releasing the new service template......... 80
Chapter 5: Creating a new plug-in.............coooiiiiiiiiiic e, 83
Plug-in creation WOrKflOWcoeiiiiiiiiiii e 83
Creating @ PIUG-IN ... e 84
Create/Edit Custom Plug-in dialog bOX.........ooovviiiiiiiiiiiieecceeeeeeeee 84
ADOUL PIUG-IN PrOPEITIES.eveiiiicieee e s 88
Add plug-in iINPUt Propertiesooooeeiiiiiiieeee e 89
Specify/Edit Input Property for Custom Plug-in dialog boX...........ccccoeeeiiiiinnn.n. 89
Adding plug-in output Propertiesuuvueeiiiiiiiee e 93
Contents

Hitachi Ops Center Automator Service Builder User Guide 4

Specify/Edit Output Property for Custom Plug-in dialog box.............ccccceeunneee. 93

Setting remote commands in PIUG-INSooeviiiiiiiiiiiee e 95
Setting environment variables ..o 95
Create/Edit Environment Variable dialog boX...........cccccoiiiiiiiiiiiiiiiieeeeeeee, 96
Adding oUtPUL fIEIS ... 96
Edit Output Filter dialog DOX..........uuuiiiiiiiiiiiiiiiiiieee e 99
Creating a conditional branch using the branching plug-ins 99
Generating an emMailooeeiiiiiii 102
Chapter 6: Building, debugging and releasing............ccoouvceiiiineeeeennne. 103
Debug and release WOrKflOWuueeiiiiiiiiiiiiii e 103
Building a service template ... 104
Build / Release Result dialog DOX..........ccooviiiiiiiiiiiiccceieeee e 105
RUNNING the deDUQGGET ..o 106
Perform Debugging dialog bOX..........oooommiiiiiiiiiiii e 108
Editing service and request entries while debuggingcccccoooiiiiiinnnn. 109
Working with the debUGeroooiiiiiiii e 110
Examining debug detailsccoooo oo 113
Managing tasks during debugging...........ceeeieeiiiiiiiieeeeeeeere e 113
Controlling the processing flow of debug tasksccccooeiiccceenn. 114
Handling interruptions of debug tasks.............cccoimiiiiiie 114
Controlling the display of tasks in the task listcccccovieiiiiiiiiiiiiiiis 115
Verifying the property mapping of @ plug-in ... 116
Edit Step Property dialog bOX.........ooooiiiiiiiiccce e 117
IMpPOorting Property ValUESccccooeiiiiiiiieeeer e 117
EXporting property ValUES............. oo 118
Releasing a service template ... 121
Chapter 7: Advanced OplioNS........cocovviiiiiii e 123
Editing the service template attributes ... 123
Edit Service Template Attributes dialog boX..........coovvvviiiiiiiiiiiiies 123
Creating Property GrOUPSe ittt e e e e e e e e e e e e e e 125
Create Property Group dialog bOX.........covvviiiiiiiiiiiiieiieeeeeeeeee e, 125
Edit Property Group dialog bOX.........ccovviiiiiiiiiiciceie e 128
MaNAQGING VEISIONSeeeiiiiiiiiiiieeee ettt e e e e e e e e e e e e e e e e e e 128
Component Version Management dialog boX...........cccceeeeeeieiiiiiiiiiiiiiinnnnn, 129
Appendix A: Reference information..............ccooeiiiiiiiiie e, 131
List of built-in service templates ... 131
List of built=-in pIUG-INSooeeeeee e 134
List of reserved properti€s ... 135
Locale settings for plug-iNS ..o 139
Contents

Hitachi Ops Center Automator Service Builder User Guide 5

Appendix B: Description of built-in plug-ins...........ccviiiiiiiiiiieeeeees 141

General Command PIUg-inoooiiiiiiiiiiii e 141
File-Transfer PIUG-iNoooriiiiiiii e 153
Repeated EXecution PIUG-iN ... 166
Email Notification PIug-in ..., 171
User-Response Wait PIUG-incooouiiiiiii e 174
Terminal Connect PIUG-in ... 184
Terminal Command PIUG-in ... 200
Terminal DiSCONNECt PIUG-iNuueiiiiiiieeeeeeeee e 212
FIOW PIUG-IN e 213
INtErval PIUG-in ... e 215
Branch by ReturnCode PIUG-iNccoooeiiiiiiee e 216
Test Value PIUG-iNuuiiiiieeeeee et 220
Abnormal-End PIUG-iNo e 226
Branch by Property Value Plug-in ... 227
File EXPOrt PIUG-in ... 231
JaVvaSCriPt PIUG-iN ... e 234
JavaScript Plug-in for Configuration Manager REST APIccoooviiiiiiinns 248
PYthon PlIUG-iN....oo e 260
WED ClIENt PIUG-iN oot 265
APPENIX C: NOLICES......uiiii i 277
I\ o] (T PRI 277
10T [281
Contents

Hitachi Ops Center Automator Service Builder User Guide 6

Preface

This manual describes how to use Ops Center Automator Service Builder.

Intended audience

This document is intended for storage administrators who use Hitachi Ops Center Automator
in the Admin or Developer role.

To use Service Builder, you must be familiar with the Hitachi Ops Center Automator concepts,
terminology, and functionality.

Product version

This document revision applies to Hitachi Ops Center Automator v10.8.3-00 or later.

Release notes

Read the release notes before installing and using this product. They may contain
requirements or restrictions that are not fully described in this document or updates or
corrections to this document. Release notes are available on the Hitachi Vantara Support
Website: https://knowledge.hitachivantara.com/Documents.

Referenced documents

Hitachi Ops Center Automator documents:
Hitachi Ops Center Automator User Guide, MK-99AUTO001

Hitachi Vantara Portal, https://knowledge.hitachivantara.com/Documents

Document conventions

This document uses the following typographic conventions:

Preface

Hitachi Ops Center Automator Service Builder User Guide 7

https://knowledge.hitachivantara.com/Documents
https://knowledge.hitachivantara.com/Documents

Document conventions

Convention Description
Bold * |ndicates text in a window, including window titles, menus, menu
options, buttons, fields, and labels. Example:
Click OK.
* |ndicates emphasized words in list items.
Italic * [|ndicates a document title or emphasized words in text.
* Indicates a variable, which is a placeholder for actual text provided
by the user or for output by the system. Example:
pairdisplay -g group
(For exceptions to this convention for variables, see the entry for
angle brackets.)
Monospace Indicates text that is displayed on screen or entered by the user.
Example: pairdisplay -g oradb
<>angle Indicates variables in the following scenarios:
brackets = Variables are not clearly separated from the surrounding text or
from other variables. Example:
Status-<report-name><file-version>.csv
= Variables in headings.
[1square Indicates optional values. Example: [a | b] indicates that you can
brackets choose a, b, or nothing.
{} braces Indicates required or expected values. Example: { a | b } indicates that
you must choose either a or b.
| vertical bar Indicates that you have a choice between two or more options or

arguments. Examples:
[a| b]indicates that you can choose a, b, or nothing.

{a| b} indicates that you must choose either a or b.

This document uses the following icons to draw attention to information:

Icon Label

Description

E Note

Calls attention to additional information.

Preface

Hitachi Ops Center Automator Service Builder User Guide

Conventions for storage capacity values

Icon Label Description

Tip Provides helpful information, guidelines, or suggestions for
performing tasks more effectively.

Important Highlights information that is essential to the completion of a
task.

Caution Warns the user of adverse conditions and/or consequences (for
example, disruptive operations, data loss, or a system crash).

CAUTION Warns the user of a hazardous situation that, if not avoided,

A could result in major or minor injury.

WARNING Warns the user of a hazardous situation which, if not avoided,

could result in death or serious injury.

Conventions for storage capacity values

Physical storage capacity values (for example, disk drive capacity) are calculated based on

the following values:

Physical capacity unit Value

1 kilobyte (KB)

1,000 (10) bytes

1 megabyte (MB)

1,000 KB or 1,0002 bytes

1 gigabyte (GB)

1,000 MB or 1,000% bytes

1 terabyte (TB)

1,000 GB or 1,000* bytes

1 petabyte (PB)

1,000 TB or 1,000° bytes

1 exabyte (EB)

1,000 PB or 1,000 bytes

Logical capacity values (for example, logical device capacity, cache memory capacity) are
calculated based on the following values:

Logical capacity unit Value

1 block

512 bytes

1 cylinder

Mainframe: 870 KB

Preface

Hitachi Ops Center Automator Service Builder User Guide

Accessing product documentation

Logical capacity unit Value

Open-systems:
= OPEN-V: 960 KB
= Others: 720 KB

1KB 1,024 (21°) bytes

1 MB 1,024 KB or 1,0242 bytes
1GB 1,024 MB or 1,0243 bytes
1TB 1,024 GB or 1,024* bytes
1PB 1,024 TB or 1,0245 bytes
1EB 1,024 PB or 1,0248 bytes

Accessing product documentation

Product user documentation is available on the Hitachi Vantara Support Website: https://
knowledge.hitachivantara.com/Documents. Check this site for the most current
documentation, including important updates that may have been made after the release of
the product.

Getting help

The Hitachi Vantara Support Website is the destination for technical support of products and
solutions sold by Hitachi Vantara. To contact technical support, log on to the Hitachi Vantara
Support Website for contact information: https://support.hitachivantara.com/en_us/contact-
us.html.

Hitachi Vantara Community is a global online community for Hitachi Vantara customers,
partners, independent software vendors, employees, and prospects. It is the destination to
get answers, discover insights, and make connections. Join the conversation today! Go to
community.hitachivantara.com, register, and complete your profile.

Comments

Please send comments to doc.comments@hitachivantara.com. Include the document title
and number, including the revision level (for example, -07), and refer to specific sections and
paragraphs whenever possible. All comments become the property of Hitachi Vantara LLC.

Thank you!

Preface

Hitachi Ops Center Automator Service Builder User Guide 10

https://knowledge.hitachivantara.com/Documents
https://knowledge.hitachivantara.com/Documents
https://support.hitachivantara.com
https://support.hitachivantara.com/en_us/contact-us.html
https://support.hitachivantara.com/en_us/contact-us.html
https://community.hitachivantara.com/s/
https://community.hitachivantara.com/s/
mailto:doc.comments@hitachivantara.com

Chapter 1: Overview of Automator Service
Builder

Service Builder has a powerful interface for managing and creating service templates that
automate tasks, supply operating parameters for provisioning and allocating storage
resources, and automate IT processes for your data center.

The service templates are based on plug-ins that serve as the building blocks for running
scripts, issuing commands on a system, and supplying the values for the input and output
properties and variables used when tasks run. The service templates and plug-ins can be
linked together as a sequence of steps that dictate the flow of processes for a set of tasks in
the main service template.

Because Service Builder is integrated with Ops Center Automator, there is no need to install
Ops Center Automator on a separate test environment, and files and folders remain in a
central location. Service Builder also enables you to test services, plug-ins, configuration
files, and mapping parameters before they are released so that quality and functionality are
ensured.

You can use the preconfigured collection of standard service templates and associated plug-
ins, or minimally modify them, to perform many of the more common data center tasks. If the
standard service templates and plug-ins are not adequate for your site, you can build your
own service templates and plug-ins and define the types of tasks to run. You can also specify
how to configure the operating parameters, user information, and connection settings and
customize elements of the user interface required when submitting a service.

After you prepare the template with the required plug-ins and define the settings for the input
and output properties, Service Builder guides you through the final stages of running,
debugging, and releasing the service templates for use in your data center.

About Service Builder

Service Builder enables you to create and manage the service templates and associated
plug-ins for automating data center tasks.

When working with service templates, you have the option of using one of the standard
service templates, modifying an existing template to meet your needs, or creating a new
template. Service templates comprise a sequence of plug-ins that run scripts, run commands,
and provide required operational parameters to accomplish various tasks.

Service Builder can create a flow with plug-ins, and package these elements into a
customized service template package. Service templates and plug-ins, both standard and
customized, can be reused, saving you development time and effort.

Chapter 1: Overview of Automator Service Builder

Hitachi Ops Center Automator Service Builder User Guide 11

About Service Builder

Service Builder enables you to:

Easily manage (copy, edit, delete, update and so on) service templates and plug-ins
through a convenient menu-driven interface.

Use or customize the standard service templates and plug-ins or create new ones to run
the required scripts and the commands to complete the tasks for your site.

Establish the flow of steps in which a series of plug-ins are run according to their
placement by simply drawing connector lines between the components.

Specify the values for the input and output properties associated with a plug-in that
provide the host details, user information, and connections settings that are required to
run a service, handle errors, and generate alerts.

Run commands, run scripts, and make use of variables required when running service.
Categorize tasks by user group or service classification.

Customize the Ul by controlling the type of icons and graphics that appear, the types of
instructions and the information a user sees when supplying the details for submitting a
service.

Debug your service templates and eventually release them for deployment in your data
center.

Import and export service templates and settings so you can reuse them.

Import and export property values that are stored in a file so that the setting and values for
a service are supplied quickly and consistently from one session to the next.

The following shows the general workflow when working with service templates and their
associated plug-ins.

Chapter 1: Overview of Automator Service Builder

Hitachi Ops Center Automator Service Builder User Guide 12

Terms and concepts

Tasks required to automate
Existing template ok or create newtemplate

.
Investigat *
Heslzns . Existing plug-in ok or create new plug-in
. Required input and output values fortasks

When creating new When editing existing Eﬁgz'};ﬁ;&gﬁ?’?ﬂm

BETVICE templatﬁ BETVICE templatﬁ modification
Prepare the service Create a blank service Createa copy of an
template template exlstlng template

| Set the dEfIann information for thEsEmcE femplate }-—

i Create or edit step and specify the required input E
and oufput property values i
Prepare operational & e]

steps “Insert the plug-in (or service template) steps to
create the task fliow for the service:

validate the service Elmld the semice tem plate |fynu want o \.rahdate
template it beﬁ:re relea.se

[__; oo

i Ifthe vaiidafion process finds any issuesinthe Fix any problems
I___ﬂnw orin a_plug-in, debug thesergi_c,e template__:

7T T yol Veart to run atesf before eleasing fhe ")
'templa.te “fou can add, edit, and runthe service |n'—

[the: develupm ent environment 1
?:‘:Iggm gr'lat“rilng'lpurt Release the service template I
the service template ¥ K2 L
to the automation 7~ e adive and derslopment envionments e § Import the service template
st the t Iste to the acth
software i__sjﬁl_j_'"ﬁ“%:;;;;g?f 2 _:’i_i to the automation software
¥ L] ¥
| Add/edit/run the service in the active environment |

[Use the service to automate your IT operations l

Legend []: Requiredi_____7: Optional
Use this guide to design and create service templates, including the plug-ins that create the
steps in a service template, with Service Builder.
You must have the Ops Center Automator Develop or Admin role to use Service Builder.

For more information on permissions and user roles, see the Hitachi Ops Center Automator
User Guide.

Terms and concepts

Before beginning to use Service Builder, you must be familiar with the terminology that is
used to refer to the various components and have an understanding of how they are
interrelated.

The following shows the various Service Builder components and their relationship.

Chapter 1: Overview of Automator Service Builder

Hitachi Ops Center Automator Service Builder User Guide 13

Terms and concepts

Input Properties =
Plug-in
Cutput Properties -
Uze in
template

Dewveloping Service Template

Flow

Step —w» Step —» Step

Build = Debugand Released

test
Dewveloping
Service Template
Add
SETVice
Import
Service?!
Releazed Releazed
Service Service
Template Template
Add
zervice
Service’?
Development envirenment Addive environment
#1
A service fortesting the service template in the development environment.
#2

The senice running in the active environment.

The following are definitions for each term:

Development and active environments
You create and modify service templates in the development environment until they
are ready for testing. After you debug and test a service template, you can import it to
the active environment in which the tasks run when a user submits it as a service.

Service template
A service template defines the various operational procedures that you specify through
the components (plug-ins and other service templates). Ops Center Automator gives
standard service templates that you create, modify and manage with Service Builder.
When creating or modifying service templates, you specify the steps and flow and
supply the relevant parameters in the development environment until the template is

Chapter 1: Overview of Automator Service Builder

Hitachi Ops Center Automator Service Builder User Guide 14

Terms and concepts

fully debugged and tested. After a service template is functioning properly and
completes the tasks without errors, you can import it to the active environment where it
is made available as a service.

Developing service template

Developing service templates are used in the development environment. A service
template is considered in development when you are specifying the operational
parameters and logic through the component steps, during the testing, and until the
template is released. Service templates you create by copying a service template are
also classified as developing service templates.

Released service template

You use released service templates in the active environment. A service template is
released when its associated plug-ins are defined, thoroughly tested, and released for
use in the Active environment. The standard service templates provided with Service
Builder are also classified as released service templates. After a service template is
released, you cannot edit it directly, but you can create a copy of the template and edit
it during the development process.

Component

A component is a service template or plug-in that you can add as a step to a flow.

Plug-in

A plug-in is a fundamental component of a service template. It consists of script files,
definition files, resource files, and an icon file to complete specific tasks. A service
template can contain multiple plug-ins that are linked together to complete a series of
tasks.

Input/Output properties

Flow

Step

Input properties specify the input settings and values required when running a task
and the output properties store the task results that you can use to confirm success or
generate errors. You can enter values into plug-in input properties directly, or pass
values to them by linking them to a service input property or variable. By linking a
service output property to a plug-in output property, you can review the results of a
plug-in. Linking properties in this way and passing values between them is called

property mapping.

The flow defines the processing sequence tasks and is established by the placement
of the steps and the connectors that link them.

The step is the run unit of a flow that is run based on the placement of the plug-in or
service template component. Components are run at each step of the flow. When the
step runs, it shows property information.

Service

A service is a custom set of automated instructions and returned output values that are
defined by the flow of the component steps and their associated input and output

Chapter 1: Overview of Automator Service Builder

Hitachi Ops Center Automator Service Builder User Guide 15

Access Service Builder

properties in a service template. Services are generated from a standard or
customized service template that you create using Service Builder.

Task
A task is the completed instance of a service. You configure and run tasks based on a
schedule.

Build/Release
After all the processes are defined and configured through Service Builder, you start
the build so that all the required files are packaged into a functioning service template
that you can test and debug. After a service template is tested and debugged, you can
release it as a service.

Import/Export
After you release a service template, you can export it to a file so that you can import it
into another Ops Center Automator installation where it can then be submitted as a
service.

Access Service Builder

You create, edit, and manage the service templates that perform a service from the Service
Builder Home window.

To access Service Builder, go to the Tools menu, then click Service Builder.

Note: You must have an Admin or Develop role to view and access the Tools
menu.

For more information on how to log on to Ops Center Automator and other areas of the Ul,
see the Hitachi Ops Center Automator User Guide.

Navigate the interface

The Service Builder user interface (Ul) consists of the following windows and menu options.
Service Builder Home window

From the Service Builder Home window, you can search for and manage existing service
templates and plug-ins and create and edit new ones.

Chapter 1: Overview of Automator Service Builder

Hitachi Ops Center Automator Service Builder User Guide 16

Navigate the interface

Service Builder Home &
CusomPugmacions = Toos v belp v
Q v~
e omizrez || Developing Released =[=]mE @0
o @ Hypervisors mpors e sorcey] Name ~
Viiere vspnere iz i) iz iz iz
- " Allocate Fabric Allocate Like Allocate Allocate Conditional
& 05 Operations E Aware Volumes E Volumes with @ Volumes with Volumes with 1 sronch
TR T with Configur... Configuration... 2DC Remote ... Smart Provisi... 010000
Sater, 05 Ioborratic 020100 020109 020000 020000 20191224
20191224 0131224 101224 20181219

© Platforms

unux_» [wingows 5
@ Allocate Volumes with 2DC Remote Replication iz X
©) Storage Operations Edit view

intelligent allocation service tat uses sets of volumes from the associated Infrastructure group for use by server(s) running,

ote replicaton

Vendor Name:

version,

© @ VM Operations Service Template key Name: 53_Ci_RemoteRepicaton

Vendor 1D;
Snapshot VM

Togs

}uocale Allocat&

Primary Secondary
site”” “site

v I Versions Registered.

Last Updated:
NEED vUP NEW OUTDATED

The Service Builder Home window shows the service templates that were already created
(Released) or those that are currently being worked on (Developing). From here, you can
quickly access relevant details on a selected service template, perform management
functions (view, copy, edit, delete, import, and export), and create new templates. It is also
from the Service Builder Home window that you access the options available for working with
and creating custom plug-ins that serve as the individual building blocks on which the
functions of the service templates are built.

The text search box enables you to search for a service template or you can complete a
search on the tag grouping with which the service template is associated. You have the
option of showing the service templates using the Card View or Table View.

To sort the service template list, select Sort By, and choose one of the following options:
* Name

* Vendor Name

* Version

= Description

* Service Template Key Name

* Vendor ID

= Registered

= Updated

= |atest Version

Managing and creating service templates

In many cases, you can use one of the existing service templates with some modification to
complete the tasks required for your site. If you cannot use any of the standard service
templates with modifications, you can create a new one.

Chapter 1: Overview of Automator Service Builder

Hitachi Ops Center Automator Service Builder User Guide 17

Navigate the interface

The following commands are provided for managing and creating service templates:

* |Import: Imports one of the existing service templates that is not automatically installed or
one that was created and saved on another system.

= Create: Creates a new service template which can include the properties, commands, and
scripts for your site.

* Edit: Enables editing on the selected service template.
= View: Shows details for the selected service template.

* Copy and Edit: Copies the selected service template and then makes the new copy
available for editing.

= Service Details: Shows all relevant details for the selected service template.
* More Actions: The following actions are available:
* Export: Exports the contents of the selected service template to a file.

* Delete: Deletes the selected service template.

Managing and creating plug-ins

You manage and create plug-ins by choosing the options from the Custom Plug-in Actions
menu:

* Create: Creates a new plug-in.

* Edit: Modifies an existing plug-in that is in the Developing state.

= Copy: Copies an existing plug-in that is in the Released or Developing state.
= Delete: Deletes a plug-in that is in the Released or Developing state.
Service Builder Edit window

From the Service Builder Edit window you can edit templates, where you can select the
required plug-ins (or other service templates) and place them in a flow where the logic and
values required to complete a task are supplied through input and output properties.

=
&

soney] pefnmon -

Chapter 1: Overview of Automator Service Builder

Hitachi Ops Center Automator Service Builder User Guide 18

Navigate the interface

By clicking the associated tab, you can view and edit details and property settings for a
service template:

The General Tab shows general details on the selected service template. By clicking Edit,
you can edit and customize the service template.

The Property Tab shows the input and output properties associated with the service
template.

By clicking the Add menu, you have the following options for the service template:

Property Group: Adds new property groups to categorize various types of properties.
Input Property: Creates and edits new input properties for the service template.
Output Property: Creates and edits output properties for the service template.
Variable: Creates a new variable.

Service Share Property: Gives access to a collection of commonly used service share
properties.

From the Preview menu, you can generate a preview that simulates how a property is
processed for a mode of execution (from the Create Service window, Create Request
window, or Task Details window) when a service is run.

The More Actions menu has the following additional options:

Set Visibility: Controls whether the settings are visible when a user runs a service
template.

Set Display Settings: Specifies the following display settings:
* Editable: Allows the display settings to be edited.

* Read only: Sets the display settings to read-only.

* Display: Shows the display settings.

* Hide: Hides the display settings.

Flow tab: Gives the following windows:

* The window on the left shows the available components (Released Plug-in, Developing
Plug-in, and Service) that you can to flow of the service template.

* The upper right window shows the plug-ins and service templates associated with the
currently selected service template.

* The lower right window shows the input and output properties available for the selected
component step and general details for the step.

= General: Gives general details on the currently selected component (plug-in step)
and enables you to edit this information. Any Next Step Condition associated with
the selected step is also shown.

* Property: Shows the input and output properties associated with the selected
component, which you can edit.

= Next Steps: Allows the creation of conditional branches that affect how the next
step in the flow runs.

* The Flow Tree window shows a structured view of the component steps that are
currently added to the service template.

Chapter 1: Overview of Automator Service Builder

Hitachi Ops Center Automator Service Builder User Guide 19

Navigate the interface

a Note: By clicking the airplane icon (in the upper right of the Service Builder Edit
window, when the Flow tab is selected), you can start a tour of the general
process of creating a service template. You can also access an overview of steps
in the flow by clicking the Mini Map icon in the upper right of the flow window.

Additional commands at the top of the window provide the following:

Close: Returns to the Home window.
Save: Saves the service template in its current state.

Debug: Builds the service template and gives access to the debugger interface used to
run through the tasks and simulate the results to make sure everything is functioning

properly.
Release : Releases the debugged version of the service template where it can then be
submitted as a service by a user through the main Ops Center Automator user interface.

Actions: Gives access to Component Version Management where you can manage
component versions.

Service Builder Debug window

From the Service Builder Debug window you can verify the flow and debug a service
template.

Service Builder A0 Allocate Volumes with 2DC Remote Replication 02.00.00
[—— 1®
Denugger @ Allocate Volumes wich 2DC Remote Replication Flow Tree

Allocate Volumes with 2DC Remote Replication >

Task Log Service Properties Break Points ®

The upper center pane shows the flow in which the plug-ins (or other service templates) run
and the lower pane shows details depending on which of the following tabs you click:

Task Log: Shows a log of completed tasks that can be downloaded (Download) and
updated on command (Refresh) or automatically (Refresh Automatically) on a regular
basis.

Service Properties: Shows the input and output properties defined for the service
template.

Break Points: Shows all of the breakpoints set for the current debugging session.

Chapter 1: Overview of Automator Service Builder

Hitachi Ops Center Automator Service Builder User Guide 20

Getting started tips

The pane on the far right shows a hierarchical view of the task steps and the pane on the far
left shows the debug controls.

Getting started tips

To assist you in initially learning how to accomplish some of the more complicated

procedures, Service Builder shows an overlay on the window that visually guides you through
the steps.

For example, when you first start to build a service template from the Flow tab, a helpful
Getting Started Tips overlay shows how you can search for plug-ins, drag and drop a
selected plug-in into the flow, and how to access the properties associated with the plug-in.

If you need it again, you can activate the hints by clicking the airplane icon (in the upper right
of the Service Builder Edit window, when the Flow tab is selected).

Chapter 1: Overview of Automator Service Builder

Hitachi Ops Center Automator Service Builder User Guide 21

Chapter 2: Working with existing service
templates

You manage existing service templates by choosing a template option from the Service
Builder Home window. This module describes how to view, copy, edit, export, import, and
delete existing service templates.

Service template overview

A custom service template consists of plug-ins, (or other service templates) that run the
commands or scripts to automate sets of tasks. The plug-ins and services are added as steps
and arranged in a sequence to form the operational flow. The service template also needs the
mapping of input and output properties to define the flow. Use property groups and service
share properties to assist you with defining input and output properties.

Two versions of service templates are available when you access the Service Builder Home
window:

Note: When creating a new service template, the service output property
service.errorMessage is added to the service template by default.

* Developing: A new service template begins with a debug version. Testing a service
template includes creating services and tasks based on the debug version of the service
template. The service template resides in the Developing status and can be copied and
modified. If a debug version of a service template is built again, the previous debug
version of the service template and its services are deleted, and the related tasks are
archived. When a Developing version of a service template is released, the debug version
of the service template and all the related services are deleted, and the tasks are
archived.

* Released: A released version of a service template has completed testing and is available
under the Released status. New services and tasks can be created and run based on a
released service template. Released service templates cannot be edited, but can be
copied and modified for use in another service template.

You can click the Developing or Released tabs from the Service Builder Home window to
access the service templates. By clicking and highlighting a service template, either from the
Card View or Table View, you can access details and complete management functions (view,
edit, copy, delete, import, or export) for a service template. If necessary, you have the option
of creating a new service template, either based on one of the existing templates or from
scratch, and then customizing it for your data center.

Chapter 2: Working with existing service templates

Hitachi Ops Center Automator Service Builder User Guide 22

Manage existing service templates

Manage existing service templates
You can manage existing service templates, such as viewing, editing, copying, deleting, and
so on, from the Service Builder Home window.

The procedures for managing existing service templates are covered in the topics in this
section.

Viewing a service template
You can view service templates that are in the Developing or Released state from the Service
Builder Home window.

To view an existing service template, follow these steps:

Procedure

1. From the Service Builder Home window, select and highlight the service template from
the Table View or Card View to view the available actions.

Details on the selected service template and the available options are shown.

2. Click View.

Result

The Service Builder View window appears with the Flow tab selected, showing the flow for
the selected service template. You can click the General and Property tabs to view more
details on the selected service template and its associated properties.

Copying a service template
You can copy and edit a service template to create a new version of an existing service
template that you can then modify for your data center.

To copy an existing service template, follow these steps:

Procedure

1. From the Service Builder Home window, select and highlight the service template from
the Table View or Card View to view the available actions.

Details on the selected service template and available options are shown.

2. Click Copy and Edit.
The Copy Service Template dialog box appears.

3. Enter the basic information for the service template, then click OK.
A copy of the service template is created.

Result

The Service Builder Edit view appears with the Flow tab selected, showing the flow for the
new service template. You can click the General and Property tabs to view more details on
the selected service template and its associated properties.

Chapter 2: Working with existing service templates

Hitachi Ops Center Automator Service Builder User Guide 23

Copy Service Template dialog box

Copy Service Template dialog box

The dialog box shows the details for a newly copied service template.

The following table describes the Copy Service Template dialog box fields, subfields, and
field groups. A field group is a collection of fields that are related to a specific action or

configuration.
Field Subfield Description

Key Name: * - Specifies the key name for the copied service template.

Version * - Version of the service template.

Vendor ID: * - Vendor ID.

Display Name: * - Name of the service template that is visible on the user
interface.

Vendor Name: - Vendor name, if applicable, for the copied service
template.

Description: - Description of the copied service template.

Tags: - Tag category associated with the service template.

An asterisk (*) indicates a required field.

Editing a service template

You can edit an existing service template that was copied and is in the Developing state to
modify or add details.

Before you begin

* |dentify which components are required to accomplish the purpose of the service
template.

* Locate the required components (Released or Developing plug-ins or other service
templates) so that they are available for use in the service template.

Procedure

1. From the Service Builder Home window, select and highlight the template to edit from
the Developing tab.

2. Click Edit.
The Service Builder Edit window appears with the Flow tab selected showing the
components (Released or Developing plug-ins and other service templates) associated
with the template. You can click the General or Property tabs to edit additional details
on the selected service template.

Chapter 2: Working with existing service templates

Hitachi Ops Center Automator Service Builder User Guide 24

Deleting a service template

Next steps

Continue to edit the service template by adding or modifying components, providing the input
and output step properties, and establishing the flow.

Deleting a service template

You can delete any service template that is in the Developing state.

To delete a service template in the Released status, run the deleteservicetemplate
command.

For instructions on running commands in Ops Center Automator, see the Hitachi Ops Center
Automator User Guide.

Before you begin
Before you delete a service template in the Developing state, complete the following steps:

1. Stop all the running tasks related to the service template.
2. Archive all the tasks related to the service template.
3. Delete all the services related to the service template.

Note: You must stop and archive all tasks related to the service template and
delete all services related to the service template before deleting the service
template. You cannot recover a deleted service template.

For instructions on performing these steps, see the Hitachi Ops Center Automator User
Guide.

Procedure

1. From the Service Builder Home window, select and highlight the service template from
the Table View or Card View to view the available actions.

Details on the selected service template and the available options are shown.
2. From the More Actions menu, choose Delete.

The Delete confirmation dialog box appears.
3. Click OK to confirm deletion.

The Information menu appears indicating whether the template was deleted.

4. Click OK.

Result

The service template is deleted.

Importing a service template

You can import a service template to make use of its service on another system.

Chapter 2: Working with existing service templates

Hitachi Ops Center Automator Service Builder User Guide 25

Import Service Template Package dialog box

Before you begin

To import a service template, the template must be accessible from the local system or the
network. You can export a service template from another system to make it accessible for
import.

a Note: In addition to the service templates that are provided by default, a
collection of other service templates are available for import. These templates are
in the released state and can be used immediately without having to go through
the build process.

To import a service template, follow these steps:

Procedure
1. From the Service Builder Home window, select the Developing tab, then click Import.
The Import Service Template Package dialog box appears.

2. Click Browse and specify the name and location of the template to import.
3. Click OK.

Result
The service template is imported.

Note: When importing a service template package, a service component in the
service template is imported as a service template.

Import Service Template Package dialog box

You can export a service template from one system and then import it to another system.

The following table describes the dialog box fields, subfields, and field groups for the Import
Service Template Package dialog box. A field group is a collection of fields that are related
to a specific action or configuration.

Field Subfield Description

File Name - Click Browse to specify the location and file name of
the service template to import.

Exporting a service template

You can export a service template to make its service available on another system.

Before you begin

The service template to export must be accessible on the local system or the network.

Chapter 2: Working with existing service templates

Hitachi Ops Center Automator Service Builder User Guide 26

Exporting a service template

Procedure

1. From the Service Builder Home window, select and highlight the service template from
the Table View or Card View to view the available actions.

Details on the selected service template and the available options are shown.

2. Click More Actions and from the menu, choose Export.
The Export menu appears.

3. Enter the name and location for the exported service template, then click OK.

Result

The service template is exported.

Chapter 2: Working with existing service templates

Hitachi Ops Center Automator Service Builder User Guide 27

Chapter 3: Working with existing plug-ins

Plug-ins are the fundamental building blocks for creating a service template. Each plug-in is
designed for a specific purpose and their use and sequence in a service template determines
the order in which specific tasks are run. You can use existing plug-ins or edit them to meet
your needs.

Plug-ins overview

One or multiple plug-ins (or other released service templates) can be inserted in a service
template to run a command or script. Input and output properties and remote commands are
set in a plug-in. When using the remote command of a plug-in, the input property can be
passed to a command or a script by specifying an input property as the argument of a
command or script. Plug-ins can be arranged in a service template to create the flow. Plug-
ins are tested and released with the service template to which they are assigned. In addition
to the plug-ins, you also have the option of adding other service templates to the flow of a
service template.

Types of plug-ins
The two types of plug-ins are as follows:

* Released: Released plug-ins include the custom plug-ins that were released in a service
template. When a development service template is released, plug-ins included in the
service template become released plug-ins. Released plug-ins cannot be edited, but can
be copied and modified for use in other service templates. Released plug-ins are listed
under the Released Plug-in tab that is available from the Flow tab of the Service Builder
Edit window.

*= Developing: New plug-ins and plug-ins that have not completed the build process and
testing are in the Developing state. Plug-ins in the Developing state can be copied and
modified to use in other service templates. During the creation or testing phase, plug-ins in
the Developing state are found under the Developing Plug-in tab that is available from the
Flow tab of the Service Builder Edit window.

Chapter 3: Working with existing plug-ins

Hitachi Ops Center Automator Service Builder User Guide 28

Custom Plug-in List dialog box

In addition to the plug-ins, you can add service templates as components in the flow of
another service template:

= Service: A service component is a released service template that has been imported to
Ops Center Automator. When a service is used as a component and placed in the flow of
another service template, the new service template can incorporate the flow of the service
component. Ops Center Automator has a set of built-in service components with its built-in
services. Service components are found under the Services tab that is available from the
Flow tab of the Service Builder Edit window.

Custom Plug-in List dialog box

The Custom Plug-in List dialog box shows the plug-ins you can access for an option, (such
as copy, edit, delete, and so on) from the Custom Plug-in Actions menu. You can search for
an existing plug-in by entering some identifying text or by the tags associated with the plug-
ins. You can manage existing plug-ins from the Released tab or access plug-ins that you are
currently working on from the Developing tab. You also have the option of specifying how the
plug-ins are listed and visible in the window by clicking either the Card View or Table View.

The following table describes the dialog box fields, subfields, and field groups. A field group is
a collection of fields that are related to a specific action or configuration.

Field Subfield Description
Vendor Name | - Vendor name, if applicable, for the plug-in.
Version - Version of the plug-in.
Key Name - Key associated with the plug-in.
Vendor ID - Vendor ID associated with the plug-in.
Tags - Tag category associated with the plug-in.
Registered - Date and time when the plug-in was registered.
Last Updated - Date and time when the plug-in was last updated.

Manage existing plug-ins

You can manage existing plug-ins from the Service Builder Custom Plug-in List dialog box
by choosing an option from the Custom Plug-in Actions menu.

Copying a plug-in

You can make a copy of a plug-in and modify it for your data center.

You can copy any plug-in that is in the Developing or Released state. When copying an
existing plug-in, you must assign a new vendor ID, plug-in key hame, or version number.

Chapter 3: Working with existing plug-ins

Hitachi Ops Center Automator Service Builder User Guide 29

Editing a plug-in

Procedure

1.

From the Service Builder Home window, access the Custom Plug-in Actions menu
and choose Copy.

The dialog box appears.

Select and highlight the plug-in to copy either from the Released or Developing tab,
then click Copy and Edit.

The dialog box appears.

Enter the required plug-in information from the General, Property, or Remote

Command tabs, then click Save.
A copy of the plug-in is created and is available from the Developing tab of the Custom

Plug-in List dialog box.

Next steps

If necessary, continue working with the copied plug-in by accessing the Custom Plug-in
Actions menu and selecting Edit.

Editing a plug-in

You can edit the input and output properties, variables, and remote commands associated
with a plug-in that is in the Developing state.

Procedure
1. From the Service Builder Home window, select Custom Plug-in Actions > Edit .
The Custom Plug-in List dialog box appears in which you can select the plug-in to edit.
2. Select the custom plug-in to edit, then click Edit.
The Edit Custom Plug-in dialog box appears for the plug-in.
3. Edit the selected plug-in by choosing the settings from the associated tabs (General,

Property, or Remote Command). Click Save when you complete the editing.
An informational message appears indicating that the edited version of the plug-in was
saved.

Copy Custom Plug-in dialog box

Use the Copy Custom Plug-in dialog box to provide the details when copying a plug-in.

The following tables describe the dialog box fields, subfields, and field groups that are
available based on the tab that is currently selected. A field group is a collection of fields that
are related to a specific action or configuration.

From the General tab, you can view and enter the following details on the selected plug-in.

Field Subfield Description
Key Name: * - Specifies the key name for the copied plug-in.
Version * - Version of the plug-in.
Vendor ID: * - Vendor ID assigned to the plug-in.

Chapter 3: Working with existing plug-ins

Hitachi Ops Center Automator Service Builder User Guide 30

Copy Custom Plug-in dialog box

Field Subfield Description
Display Name: * | - Plug-in name that is shown in the user interface.
Vendor Name: - Vendor name, if applicable, for copied plug-in.
Description: - Description of the copied plug-in.
Tags: - Tag category associated with the plug-in.
Icon: - Icon associated with the plug-in.
Fields marked with an asterisk (*) are required.

When making a copy of a plug-in, change the Key Name or Vendor ID to differentiate the
copied version from the original.

From the Property tab, you can search for and view all the input and output properties
associated with the selected plug-in. You also have the option of managing the properties by
clicking one of the options. For example, you can add a new input or output property by
choosing Add, edit an existing property by selecting Edit, or delete a selected property by
selecting Delete.

Field Subfield Description

Key Name - Specifies the key name for the input or output property.

Display Name - Specifies the display name for the input or output
property.

Description - Shows a description of the input or output property and
its function.

Required - Indicates if the input or output property is required
(true) or not (false).

Default Value - Indicates any default value that is associated with the
input or output property.

From the Remote Command tab, choose the platform from which to run the remote command
by selecting an option from the Add Platform menu. You can also specify the Credential Type
by choosing either Shared agentless setting or Service input property. Other options for
controlling how to run the remote command depend on the selected platform.

Field Subfield Description

Credential Type - Specifies the credential type required for the plug-in.

Chapter 3: Working with existing plug-ins

Hitachi Ops Center Automator Service Builder User Guide 31

Copy Custom Plug-in dialog box

Field Subfield Description

Select Shared agentless setting if you use the
credential information in the agentless remote
connections view under the Ops Center Automator
Administration tab when the service is run. Shared
agentless setting is the default Credential Type.

The following reserved plug-in property is automatically
set for the shared agentless setting credential type:

plugin.destinationHost

Enter the target of a process by IPv4 address, IPv6
address, or host name (up to 256 characters).

Select Service input property to use the credential
information as an input property.

The following reserved plug-in properties are
automatically set for the Service input property
credential type:

* plugin.destinationHost

Enter the target of a process by IPv4 address, IPv6
address, or host name (up to 256 characters). If the
destination host is Ops Center Automator Server
(localhost), the user ID and the password are not
necessary.

= plugin.account

Enter the user ID for logging on to the target host
(up to 256 characters).

= plugin.password

Enter the password for logging on to the target host
(up to 256 characters).

* plugin.suPassword

Enter the password of the root account used for
logging on to a target host in a Linux OS
environment (up to 245 characters). If the target
host is running on the Windows OS, this property is

ignored.
Windows Options | Run as Runs the command using the system account.
system
account
Linux/UNIX Execute with | Runs with root privileges.
Options root
privileges

Chapter 3: Working with existing plug-ins

Hitachi Ops Center Automator Service Builder User Guide 32

Deleting a plug-in

Field Subfield Description
Character Character Set Auto Judgment applies to the Linux OS.
Set Auto If enabled, the script runs using the default locale of the
Judgment user. If disabled, the script runs with the LC_ALL=C

locale. The default is enabled.

Add Platform

Specifies the platform for the remote command
(Windows or Linux platform).

Import Settings - Specifies that the settings are imported from another
os.

Execution - Select Script name if based on a script, or CLI

Method: Command if using a stored command.

CLI Command: *

Enter the CLI command (up to 8,192 characters) for
the remote command. Required if Script name or CLI
Command is selected for Execution Method. Insert All
Input Properties inserts all input properties defined for
the plug-in to the command.

Output Properties

Script - Select Attachment if uploading a script file, or Type in

specification to directly enter the script information.

method: Use the following file format for a plug-in that runs a
script: name-of-plug-in.extension.

File* - Click Browse to specify the file that holds the command
or script.

Mapping - Specify the mapping definition of the output property

Definition of for a command or script. By selecting and highlighting

a property in the list and then clicking the pencil icon,
you can access the Edit Output Filter dialog box
where you can specify an output filter that controls the
data that is passed to the output property.

Execution
Directory

Specify the folder from which the command runs.

Environment
Variables

Select environment variables for the command or
script. When selecting this option, the Create/Edit
Environment Variable dialog box appears where you
can enter the required variable information.

Fields marked with an asterisk (*) are required.

Deleting a plug-in

You can delete a plug-in you no longer need. You cannot recover a deleted plug-in.

Chapter 3: Working with existing plug-ins

Hitachi Ops Center Automator Service Builder User Guide 33

Deleting a plug-in

Procedure

1. From the Service Builder Home window, select the Released or Developing tabs.
Access the Custom Plug-in Actions menu and choose Delete.
The Custom Plug-in List dialog box appears.

2. Click and highlight the plug-in to delete from either the Card View or Table View and

then click Delete.
The Delete confirmation dialog box appears.

3. Click OK to confirm deleting the plug-in.

Result

The plug-in is deleted and is no longer shown in the Service Builder Home window.

Chapter 3: Working with existing plug-ins

Hitachi Ops Center Automator Service Builder User Guide 34

Chapter 4: Creating a new service template

Creating a new service template involves creating a new template or copying and editing an
existing template. The new or modified service template is then defined by the components
(plug-ins or other service templates), resource files, icon files, custom files, flows, and service
definitions.

Service template creation workflow

You can manage and create new service templates from the Service Builder Home window.
(You also can manage and create new plug-ins from the Custom Plug-in Actions menu.)

To manage an existing service template (edit, view, copy, import, or export), select the service
template (either from the Developing or Released tab), then click the action you must
complete. For the details on a service template, click Service Details.

When creating a new service template, you must do some planning and then complete the
phases described in the following workflow:

Phase 1: Preparation

1.

Decide the purpose of the service template. Consider the steps for automating the
process and determine if you must create a new template or modify an existing
template.

Prepare to create the service template. This involves identifying existing components, or
creating new components, preparing icon files, and setting definition files, resource files,
custom files, and flow.

Phase 2: Creation

1.

Create a new service template or copy and modify an existing service template. Enter
the basic information such as the name, ID, vendor name, and description. The service
template is now in the Developing state.

Create new plug-ins or use the existing plug-ins if they are sufficient.

Define the flow for the service template by arranging the templates and plug-ins as steps
and then connect them in the order you need them to run.

Define the data flow by mapping the input and output properties of the component with
the input and output properties of the service template.

Set the service definitions with the input and output properties of the service template.
Add service share properties, property group information, and variables.

Phase 3: Testing/Debugging

1.

Build the service template for testing.

Chapter 4: Creating a new service template

Hitachi Ops Center Automator Service Builder User Guide 35

Service template creation workflow

2. Complete testing. Create services based on the service template debug configuration.

3. Make corrections as the result of testing.
4. Rebuild and retest the service template until it runs successfully.

Phase 4: Releasing

Release the service template. A service template must be in the Released status to submit it

to the active environment.

The following figure shows the typical steps for creating or editing a service template.

1

- Create new or edit
existing service

template Plug-n &——
- Set zervice definition
information Deploy

- Set the display name

and other aspeds ofthe Developing =ervice template
zervice template ™ - :

- Change description to |
reflect customized |
SErViCe
3 Flow
Create the fliowby adding———9
plug-in steps and Step — Siep —» Stie
cannedcting them in the : : P e i
order that each must run
c

'}

Build the senvice ; Debug and
- Build - Release
tempilate to validate the revise
template contents . »
7 Developing
Test the functionality of service template
the sarvice by adding,
editing, and running the & Add
service in the SEMViCE
development environment Service™
&
-
The developed senvice
template iz created
Releazed

service template
10

Add, edit, and run the

2

- Create new or edit
existing plug-ins

- Set definition
information

- Change dizplay
information fr the
plug-ins

4

Specifythe
variables and
values forthe input!
output properies
aszociated with the
plug-ns

6

Check the fundionality
ofthe service template
and fix any issues

9

Import the service
template to the active
environment (if
different from the
development
envimnment)

Heleazed
service template

Add

service in the adive
environment

Development environment

#1

A zenvice that tests the template in the development envimnment
#2
The senvice running in the aclive envircnment

Chapter 4: Creating a new service template

& =Senice

Service™

Addive environment

Hitachi Ops Center Automator Service Builder User Guide

36

Creating a new service template

Creating a new service template

You can create a new service template to create a custom service that automates a series of
tasks for a user.

Before you begin
* Identify the components required to accomplish the purpose of the service template.
* Locate the required components (Released or Developing) so that they are available for

use in the service template.

Note: Although the procedure for creating a new service template is described, in
many cases you can copy an existing service templates to use as a model and
then make the required modifications.

Procedure
1. Choose one of the following methods to create a new service template:

« To create a new service template from scratch, from the Service Builder Home
window, access the Developing tab, then click Create.

The Create Service Template dialog box appears.

= To create a new service template based on an existing template, from the Service
Builder Home window, access either the Developing or Released tab, then click
Copy and Edit.

The Copy Service Template dialog box appears.

2. Enter the information for the new service template (and select any tags you want the
template associated with), then click OK.
The Service Builder Edit window appears with the Flow tab selected.

Result

You can begin searching for and dragging and dropping the required components (Released
or Developing plug-ins and other Service Templates) to the flow in the order you need them
to run.

Next steps

Continue to provide the input and output step properties, establish the flow and, when done,
debug and release the service template.

Create Service Template dialog box

When creating a new service template, supply the template details from the Create Service
Template dialog box.

The following table describes the dialog box fields, subfields, and field groups. A field group is
a collection of fields that are related to a specific action or configuration.

Chapter 4: Creating a new service template

Hitachi Ops Center Automator Service Builder User Guide 37

Specify the step flow

When you enter information in a dialog box, if the information is not valid, errors that include a
description of the problem appear at the top of the box.

Field Subfield Description
Key Name * - A unique key name is assigned to each service
template for easy access and tracking.
Version * - A version number for the new service template.
Vendor ID * - An ID associated with the vendor.

Display Name:

Name of the new service template that is shown
through the user interface.

Vendor Name:

Vendor name, if applicable.

Description:

Description of the new service template.

Tags:

Specifies any tags categories the template is
associated with.

Fields with an asterisk (*) are required.

Specify the step flow

You can specify the steps for a service template by adding the components (plug-ins or other
service templates) and establishing the run order from the Flow tab.

When establishing the flow of steps in a service template, you must add the plug-in (or
service template) steps from the Flow view and then draw connectors to establish the run
order. You then specify the mapping for the input and output properties.

The following figure shows the typical flow for a service template.

-

Service template

Flow

[Swp

}I’[Smp

Component
Plug-in] [Plug-in]
Flow
Step Step

o

/

Chapter 4: Creating a new service template

Hitachi Ops Center Automator Service Builder User Guide 38

Creating the steps in a data flow

When you first start to build a service template from the Flow tab, a helpful "Tour" option
leads you through the plug-in search process, how to drag and drop a selected plug-in to a
flow, and how to access the properties associated with the plug-in. After initially viewing this
tour, you can specify that it not be shown again by checking the associated check box. You
can always activate the tour again.

Creating the steps in a data flow

You create the steps in a service template from the Service Builder Flow tab of the Edit
window by specifying the required components for a service.

Before you begin
= A service template must be open and in the Developing status for editing or creation.
* Identify the plug-ins required to accomplish the purpose of the service template.

* Locate the components (Released or Developing) so that they are available for use in the
service template.

Procedure

1. From the Service Builder Edit Flow tab, click a component, drag it to the Flow view,
and release.
The Create Step dialog box appears.

2. Enter the information for the step, then click OK.
The component icon appears in the Flow view as a step and step details, including
related properties, are accessible from the General or Property tabs.

3. Continue to add steps as required.

=« o edit, copy, cut, or delete a step, right-click the component and select the
associated option. When copying a component, you can paste it in another service
template.

« To select multiple steps, drag the mouse to create a rectangle encompassing the
targeted steps, or click each step icon while pressing the Ctrl key to add to the
selection.

=« To move a step, click the target step icon, drag it to the targeted area of the Flow
view, and release.

« To add a second flow, right-click the target flow in the Flow Tree view, then click
Create Flow.

4. To exit the Service Builder Edit window without saving, click Close. To save your
changes, click Save.

Result

Steps are added and saved to the service template.

Next steps

Continue to edit the service template and add a flow that shows the run order of the steps.

Chapter 4: Creating a new service template

Hitachi Ops Center Automator Service Builder User Guide 39

Create/Edit Step dialog box

Create/Edit Step dialog box

You can enter the details associated with a component for a step in a service template from
the Create/Edit Step dialog box.

g Note: You can click View to get details on a step component.

The following table describes the dialog box fields, subfields, and field groups for the Create/
Edit Step dialog box. A field group is a collection of fields that are related to a specific action
or configuration.

When you enter information in a dialog box, if the information is not valid, errors that include a
description of the problem appear at the top of the box.

Chapter 4: Creating a new service template

Hitachi Ops Center Automator Service Builder User Guide 40

Create/Edit Step dialog box

Field Subfield Description
Step Step ID* The ID of the step.

Step Name* The name of the step.

Description A short description of the step.

Component Vendor Name The vendor name associated with the
component.

Version The version of the plug-in. Click the version list to
view the choices and see if there are multiple
versions.

Key Name The key name associated with the component.

Vendor ID The vendor name of the plug-in.

Tags The tag categories associated with the step.

Registered The date and time the step was originally
registered.

Last Updated The date and time the step was last updated.

Next Step Condition: Sets instructions for when to run the next step.
Conditions The choices are:

= Determine the return value based on the
threshold

Run the next step when the return value is
equal to or less than the Error Threshold. If
the return value is more than the Error
Threshold, this step ends with an error status.

* Always succeed regardless of return value
Always run the next step.
* Always fail regardless of return value

Always end after this step with an error status.

Error Threshold:*

Set a whole number from 0 through 255 that
establishes the threshold value at which a
conditional step runs.

Use Warnings:

If enabled, runs the next step with an error status
when the Use Warnings are exceeded.

Warning Threshold:

Required if the Flow condition in case of error is
enabled. Set a whole number from 0 through

255. If the return value is less than the Warning
Threshold and the Error Threshold, run the next

Chapter 4: Creating a new service template

Hitachi Ops Center Automator Service Builder User Guide 41

Specifying step properties

Field Subfield Description

step. If the return value is equal to or more than
the Warning Threshold, but equal to or less than
the Error Threshold, the task status reflects "In
Progress (with Error)" when running and "Failed"
when the task is complete. The Warning
Threshold number cannot be larger than the
Error Threshold.

An asterisk (*) indicates a required field.

Specifying step properties

You must specify the input and output properties that are used for the tasks associated with a
component (plug-in or other service template).

A service template defines a generic operating procedure. For this reason, properties that
store the input values required to run the service, such as host names and resource limits,
are defined when services are added from a service template. These are called service input
properties. The results of running a service are output to the Ops Center Automator user
interface as the values of service output properties. Input properties that store the input
values required for running a step and output properties that store results are defined through
the plug-ins. You can enter values in plug-in input properties directly, or pass values to them
by linking them to a service input property or variable. By linking a service output property to
a plug-in output property, you can review the run results of a plug-in from the Ops Center
Automator user interface. Linking properties in this way and passing values between them is
called property mapping.

You must map the component input and output properties for every step with the input and
output properties and variables of the service template. Associate the input properties of the
components used in a service template with the input properties or variables, or output
properties of other component steps associated with a service template. The service template
input properties store the input values required to run a service. The service template output
properties store the run results of the service.

The value of the plug-in input property can be the value that was previously set for the
property, or directly set for the service template. The input property can also be a variable.
You can apply the service share properties to the input properties.

The output property content depends on the type of component. You can store the results of
running a step as output properties. Variables temporarily hold the values that are passed
between components.

The input and output properties of the components are set from the Property tab in the
Service Builder Edit window. The input and output properties and variables for the service
template are set in the Property tab of the Service Builder Edit window.

The following figure shows a typical mapping between the service template properties and
the corresponding plug-in step properties.

Chapter 4: Creating a new service template

Hitachi Ops Center Automator Service Builder User Guide 42

Specifying step properties

Service template

&{& Input property

1

Submits senvice Plug-n A l
Input property 1

1

Output property

Variable 1

Plug-n B i

Input property
Output property

Output property 2

Output to the automation sofware
user interface as the execution results
ofthe service.

Legend — : Property mapping

In this figure:
* The value input to Input property 1 of the service is input to Input property 1 of Plug-in A.
* The value input to Input property 2 of the service is input to Input property 2 of Plug-in B.

* The unmapped Input property 2 of Plug-in A is assigned the value entered when the
service template was created or edited.

Because Output property 1 of Plug-in A is mapped to Variable 1, and Variable 1 is mapped to
Input property 1 of Plug-in B. Values output as Output property 1 of Plug-in A are stored in
Variable 1 then input to Input property 1 of Plug-in B. This passes the run results of Plug-in A
to an input property of Plug-in B, so it can be used in the processing of Plug-in B. Because of
this mapping, the following results are achieved:

* The run results of Plug-in A (standard command output and standard error output, and
output properties) output as Output property 2 of Plug-in A are also output to Output
property 2 of the service. This enables you to review the run results of Plug-in A in the
Ops Center Automator user interface.

* The run results of Plug-in B (standard command output and standard error output, and
output properties) output as Output property 1 of Plug-in B are also output to Output
property 1 of the service. You can also review the results of Plug-in B through the Ops
Center Automator user interface.

Before you begin

A service template in the Developing state must exist with steps you added to the Flow view.

Procedure

1. From the Service Builder Flow tab of the Edit window, click and highlight a step in the
flow.
A list of properties associated with the selected component (plug-in or other service
template) are shown from the Property tab. You can either view the input properties or
the output properties by clicking the icon next to the search box that allows you to enter
a text search to locate specific properties in a long list.

Chapter 4: Creating a new service template

Hitachi Ops Center Automator Service Builder User Guide 43

Specify Component Input/Output Property Mapping Parameters dialog box

2. With the input properties icon selected, enter the input properties for the step:
« Enter the details directly in the Value column of the table.
« Click the pencil icon to enter the details using the dialog box.

3. With the output properties icon selected, click the pencil icon to enter the details of the
output properties using the Specify Component Output Property Mapping
Parameters dialog box and then click OK. You can add new output properties by
clicking Add Output Property and you can add variables by clicking Add Variable.

4. Continue to enter the required input and output properties.

5. If necessary, you can verify the GUI Visibility check box that determines whether the
selected property is visible to Modify/Submit users.

Next steps

Set the service definitions of the service template.

Specify Component Input/Output Property Mapping Parameters dialog
box

You can specify the mapping of input and output properties for the components incorporated
in a service template through the Specify Component Input/Output Property for Mapping
Parameters dialog box.

The following table describes the dialog box fields, subfields, and field groups. A field group is
a collection of fields that are related to a specific action or configuration.

When you enter information in a dialog box, if the information is not valid, errors that include a
description of the problem appear at the top of the box.

Chapter 4: Creating a new service template

Hitachi Ops Center Automator Service Builder User Guide 44

Establishing the flow of execution

Field Subfield Description
Key: - The input or output property key.
Display Name: | - Name of the input or output property.
Description: - Description of the input or output property.
Data Type: - Data type of the property: string, boolean, integer,

double, date, password, or composite. Available
options depend on the options you chose.

You can verify the Array Type option for the data type
to be treated as an array. In this way, a set of the
properties of the same type (number of elements is a
variable) can be handled as a single property to make
data mapping easier, especially when passing data
between a Service and the Plug-ins.

Setting - Setting method can be View Property or Direct Input.

Method: When entering a direct input value, you click Insert
Property to make the value from the specified property
the value.

Value: - Direct input value associated with a property.

When specifying component input properties, you can view a list of plug-in steps shown
under the Step Tree for the currently selected component.

Depending on whether you are working with input or output properties, you can click Add
Input Property or Add Output Property to add an input or output property, or Add Variable to
add a variable to a property group.

Establishing the flow of execution

Map the process flow of a service template from the Service Builder Edit window Flow tab.
Use the Flow view to connect the steps icons and establish a flow.

You establish each unit of processing in a flow by dragging plug-ins from the Plug-in view to
the Flow view. Each plug-in dropped to the Flow view is called a step. Create a flow by
placing the steps required to run a task in the required order and connecting them with
relational lines as shown in the following figure.

Chapter 4: Creating a new service template

Hitachi Ops Center Automator Service Builder User Guide 45

Creating a flow hierarchy

Drag and drop

Plug-in A

Plug-in B

Plug-in C

Relational
line

Relational
line

Step Step Step

Flow

The flow can contain one step that connects to two or more steps and similarly, two or more
steps can connect to one step. In the figure, the next step is run only after every connected
step finishes. You can also use the Flow plug-in and Repeated-execution plug-in to define a
flow in another flow.

Follow these steps to establish the flow of steps for a service template:

Before you begin

A service template in the Developing state must exist with the steps you added to the Flow
view.

Procedure

1. From the Service Builder Edit window, access the Flow tab, and then drag and add the
necessary plug-ins (or services) into the Flow view in the relative order the steps are run
by the service.

2. To establish the order in which the steps in the flow are run, click and hold the node
associated with the step that to run first, drag the connector line across to the step to run
next, and then release.

A connection line appears indicating the steps are connected. The arrow indicates the
direction of the flow.

3. Continue to add connections to steps as needed.

=« To delete a connection, click the targeted connection line, then click Delete.

Next steps

Define the input and output properties and enter the mapping parameters.

Creating a flow hierarchy

You can create a flow hierarchy in a service template by defining a flow in another existing
flow. The Flow Tree view shows the hierarchy of the flow.

You also can create a flow hierarchy by deploying flow plug-ins, and repeating a unit of
processing that consists of several steps by deploying repeated-execution plug-ins as shown
in the following figure.

Chapter 4: Creating a new service template

Hitachi Ops Center Automator Service Builder User Guide 46

Creating a flow hierarchy

) Drag and drop Executes
Flow plug-in once

Relational
line

Ordinary step Hierarchical step

-
- -

Repeated L ~—
execution plug-in - Executes n | ~~=_

Repeated step

-

The following table shows the plug-in roles and their relationship to the various steps in the
flow.

Dragged and dropped

plug-in Type of step Role
Flow plug-in Hierarchical step Creates a flow hierarchy.
Repeated Execution plug-in | Repeated step Repeats execution of the

specified flow. To create a
hierarchy on a flow
subordinate to the repeated
step, you must use a flow
plug-in. If you try to create a
hierarchy on a flow you
copied and pasted that
includes a repeated step, an
error occurs. Use the
Repeated Execution plug-in
to create a nested loop to a
maximum of three levels.

Other plug-ins Ordinary step Runs the plug-in normally.

Chapter 4: Creating a new service template

Hitachi Ops Center Automator Service Builder User Guide 47

Creating a Next Step conditional branch in a flow

You can view a list of the steps in a flow from the Flow Tree view where it shows the name of
the service template as the first step of the flow. Lower levels are represented by the step
name associated with the step that runs the flow plug-in or repeated-execution plug-in. When
you run a service template that includes a hierarchical flow, only the top-level steps in the
flow appear in the Task Details dialog box. Steps in subordinate flows and in flow plug-ins
and repeated-execution plug-ins are not visible.

Before you begin

A service template in the Developing state must exist with steps you added to the Flow view.

Procedure

1. From the Service Builder Edit window, select the Flow tab, and then drag the required
plug-ins to the Flow view to establish the execution hierarchy for the other plug-ins in
the flow.

2. To repeat execution of the specified flow, select the Repeated-execution plug-in and
drag it into position.

3. Add connections to steps as needed.
4. (Optional) To delete a connection, click the targeted connection line, then click Delete.

Creating a Next Step conditional branch in a flow

You can create a conditional branch to control the flow of steps that run depending on when a
condition is met.

A Next Step conditional branch is useful for running a step in a flow based on a condition.

You specify next step conditions from the Next Steps tab when establishing the flow in a
service template.

Service Builder =2 [Sample] New Conditional Branch Test 01.00.00 x
General Property Flow Cclose save Depug Relsase acuons ¥ | 2 1®
ease: -i eveloping Flug-in ervice 8
Rk eby i = [sample] New Conditional Branch Test
Q & v~ [Sample] New Conditional Branch Test
SortBy| name = B % @ B

‘ G orermeEerign

‘] Access Conguraton anager REST A6l

‘ gy Acausten o coumn st from s Sl fle

AcausTon of row Gata fram s Cov/Ece fle
‘ J®)

‘ iy A HasSesstarage nfermaion

—
"'?,f Allocate Volumes Plug-in

‘_"?f Backup volume

SortBy| Definiion v

% Branch by Property Value Plugn - -
2l Step Name Condition Name Condition Type | Condition Description

Always Run Always Run ALWAYS

Brancn by RetumCode Plug-n
‘ ne s 2 E 1100 >value =10 | F100>value=10 | IF 100> {Value} AND &

{Value}> 10

i virtual disk T virtual server
‘ 13
!

! Fhram P Eattinne of el Carcar

The step names and conditional settings associated with any of the steps in the flow are
shown:

Chapter 4: Creating a new service template

Hitachi Ops Center Automator Service Builder User Guide 48

Specify Execution Condition dialog box

Step Name
Name of the step for which the condition is defined.

Condition Name
Name of the conditional expression to evaluate. By default, this is the next step name.

Condition Type
Type of condition (ALWAYS, IF, OTHER) that must be met for a next step to run. When
selecting [OTHER], there must be an item with a conditional expression of type [IF].

Condition
Specifies the condition using valid expressions that are applied to service properties.

Description
Gives a brief description of the condition being evaluated.

To add a Next Step condition:

Procedure

1. Drag the step to include in the conditional flow to the flow area of the window.

2. Connect a line between the preceding step in the conditional flow and the next step to
run if the condition occurs.

3. From the Next Steps tab, click the required Condition Type (ALWAYS, IF, OTHER) from
the list. If you choose ALWAYS, the step always runs normally by default. Because you
must use IF and OTHER together, your only other choice is IF.

4. Click the pencil icon to access the Specify Execution Condition dialog box where you
can enter the value for the condition.

5. Enter the condition value, then click OK. Optionally, you can also enter a description for
the next step condition.

When you finish, the condition is indicated by a conditional icon on the execution flow
line arrow.

To create a more complex conditional branching, you can use multiple Branch by
Returncode Plug-ins so that one step is run when a condition is met and another step is
run when the condition is not met.

Specify Execution Condition dialog box

You can specify the steps that run next in a flow based on a condition.

The following table describes the dialog box fields, subfields, and field groups. A field group is
a collection of fields that are related to a specific action or configuration.

When you enter information in a dialog box, if the information is not valid, errors that include a
description of the problem appear at the top of the box.

Name Description Editability

Step Name Name of the step for which the condition is Not Allowed
defined.

Chapter 4: Creating a new service template

Hitachi Ops Center Automator Service Builder User Guide 49

Specify Execution Condition dialog box

Name

Description Editability

Condition Name

Name of the conditional expression that is to be Allowed
evaluated. By default, this is the next step name.

Description Brief description of the condition that is being Allowed
evaluated.
Value Specifies the condition using valid expressions Allowed

that are applied to service properties.

Following are the valid operators.

Symbol/String

Meaning

Notes

OR

Logical OR

The operator can be uppercase or
lowercase.

A space is required on either side of the
OR operator.

A mixing of logical AND is not allowed.
But, logical OR is allowed.

AND

Logical AND

The operator can be uppercase or
lowercase.

A space is required on either side of the
AND operator.

A mixing of logical OR is not allowed.
But, logical AND is allowed.

Equal sign

The operator can be a string or a
numeric value.

A space is required on either side of the
= operator.

A full-width number is considered a
string.

Not equal to sign

The operator can be a string or a
numeric value.

A space is required on either side of the !
= operator.

A full-width number is considered a
string.

Chapter 4: Creating a new service template

Hitachi Ops Center Automator Service Builder User Guide 50

Specify Execution Condition dialog box

Symbol/String Meaning Notes

<= Less than or equal = Only numerical values are allowed.

= A space is required on either side of the
<= operator.

= A full-widths number is not allowed.

>= Greater than or equal = Only numerical values are allowed.

= A space is required on either side of the
>= operator.

= A full-width number is not allowed.

< Less than = Only numerical values are allowed.

= A space is required on either side of the
< operator.

= A full-width number is not allowed.

> Greater than * Only numerical values are allowed.

= A space is required on either side of the
> operator.

= A full-width number is not allowed.

equals Equal sign * Only string values are allowed.

* The operator can be uppercase or
lowercase.

= A space is required on either side of the
"equals" operator.

not equals Not equal to sign = Only string values are allowed.
= The operator can be upper or lower case.

= A space is required on either side of the
"not equals" operator.

contains Contain = Only string values are allowed.

= The operator can be uppercase or
lowercase.

= A space is required on either side of the
"contains" operator.

Chapter 4: Creating a new service template

Hitachi Ops Center Automator Service Builder User Guide 51

Specify the property settings

Symbol/String Meaning

Notes

not contains Does not contain

Only string values are allowed.

The operator can be uppercase or
lowercase.

A space is required on either side of the
"not contains" operator.

Escape

Interprets and distinguishes an operator
symbol as a string.

Insert the escape operator before each
word in an expression that is to be
treated as a string (for example, "a \not
\equals b").

If treating a double quotation mark (") as
a string, specify (\").

If treating a backslash as a string, specify

(W)

Specify the property settings

You specify the input and output properties, service share properties, and variables for a
service template from the Service Builder Edit window Property tab. These settings affect
how the various parameters associated with a template appears to the user.

From the Property tab, you complete the following tasks:

= Open/Close All Groups: Displays or collapses the view of the property groups.

* Add: has the following options:

* Edit: Edits details for the selected property.

= Delete: Deletes the selected property.

Property Group: Adds a property group for organizing the display of properties.

Input Property: Creates a new input property for the selected service template.

Output Property: Creates a new output property for the selected service template.

Variable: Creates a new variable for the selected service template.

Service Share Property: Adds a service share property.

Chapter 4: Creating a new service template

Hitachi Ops Center Automator Service Builder User Guide 52

Selecting the service share properties

* Preview : Previews the use of the property from the Create Service Window, Create
Request Window, or Task Details Window.

* More Actions: Has the following options:

* Set Visibility: Specifies whether these items are visible to the user from the Create
Service window only or the Create Service and Create Request windows.

* Set Display Settings -- Sets the display settings for modification by the user as
Editable, Read only, Display, or Hide.

In some cases, you must customize the service template by changing the default icon or the
text and figures that display for the Service Details dialog box and the overview associated
with the service.

Selecting the service share properties

You can add service share properties to a service template to implement common, predefined
functions.

Before you begin

A service template in the Developing state must exist with the steps you added to the Flow
view.

Procedure

1. From the Service Builder Edit window, access the Property tab.

2. From the Add menu, choose Service Share Property.
The Select Service Share Property dialog box appears. A list of service share
properties that you can assign to the property group are provided for the current service
template.

3. Select the service share property to add to the service template from the list, then click
OK.
The selected service share property is added to the service template.

Next steps

* To set the value for the selected service share property, access the Edit Input Property
for Service dialog box.

* You can add a service share property to a property group by accessing the Add menu,
selecting Property Group, and supplying the required attributes.

Select Service Share Property dialog box
You select the service share properties for a property group from the Select Service Share
Property dialog box.

The following table describes the Select Service Share Property dialog box fields, subfields,
and field groups. A field group is a collection of fields that are related to a specific action or
configuration.

When you enter information in a dialog box, if the information is not valid, errors that include a
description of the problem appear at the top of the box.

Chapter 4: Creating a new service template

Hitachi Ops Center Automator Service Builder User Guide 53

Select Reference Property dialog box

Field Subfield Description
Display Name: | - Display name assigned to the selected property.
Key: - Key name associated with the service share property.
Description: - Description of the function implemented by the service
share property.
Property - Specifies the property group to which the service share
Group: property is assigned.

You can set values for service share properties by clicking Edit.

Select Reference Property dialog box

You select reference properties from the Select Reference Property dialog box.

The following table describes the Select Reference Property dialog box fields, subfields,
and field groups. A field group is a collection of fields that are related to a specific action or

configuration.

When you enter information in a dialog box, if the information is not valid, errors that include a
description of the problem appear at the top of the box.

Field

Subfield

Description

Step Tree Area

Show the list of steps defined in a template.
Information in the Step Tree area is highlighted by the
following icons:

* RESERVED PROPERTY:
= Service Template:
= Service plug-in:

* Flow plug-in:

Chapter 4: Creating a new service template

Hitachi Ops Center Automator Service Builder User Guide 54

Select Reference Property dialog box

Field

Subfield

Description

= Others:

* Repeated Execution plug-in:

Properties List | -

Shows the Display Name and Key Name of properties
defined for the group selected in the Step Tree area.
Initially, only the Step directly before the Step with the
property that you are editing is visible.

Show All Steps | -

editing is off.

When set to ON, all the steps defined in the template
are visible. The initial display is OFF. Not all steps are
shown when the Param Mode of the Property you are

Reserved -
Properties:

Tree area.

When the Repeated Execution Plug-in is selected in
the Step Tree area, the reserved properties related to
the plug-in are visible. This item is visible only when
the Repeated Execution Plug-in is selected in the Step

The selectable repeated execution input value (reserved.loop.input, reserved.loop.inputN)
and repeated execution loop index (reserved.loop.index, reserved.loop.indexN) are shown in
a menu in one line. To help you easily understand the relationship between repeated
execution input value and repeated execution loop index and the corresponding Repeated
Execution Plug-in, the step name of the Repeated Execution Plug-in corresponding to the
Display Name is also described in parenthesis.

Following are the reserved properties:

Property

Display Condition

Display Name and Format

reserved.loop.input

reserved.loop.index

When selecting a Repeated
Execution Plug-in that is one
level above the base step as
seen from the plug-in where
this dialog box appears in
the Step Tree area.

Input for repeated execution
1 level above (corresponding
step name)

Loop index 1 level above
(corresponding step name)

reserved.loop.inputN

reserved.loop.indexN

When selecting a Repeated
Execution Plug-in that is N
levels above the base step
as seen from the plug-in
where this dialog box
appears in the Step Tree
area.

Input for repeated execution
N levels above
(corresponding step name)

Loop index N levels above
(corresponding step name)

Chapter 4: Creating a new service template

Hitachi Ops Center Automator Service Builder User Guide

55

Adding input properties

Adding input properties

You can specify the input properties for a property group associated with a service template.

Before you begin

A service template in the Developing state must exist with steps you added to the Flow view.

Procedure

1. Add input properties to a property group associated with a service template by using
one of the following methods:

=« From Service Builder Edit window, access the Property tab, go to the Add menu,
and choose Input Property.

« From the Flow tab Step Properties area, go to the Value field, then click the pencil
icon. The Specify Component Input Property Mapping Parameters dialog box
appears in which you can add properties. Click Add Input Property.

2. The Create Input Property for Service dialog box appears.

3. Enter the details for the input property.

4. Click OK to save the input property details.
The specified input property appears in the input property list.

Create/Edit Input Property for Service dialog box

The following table describes the Create/Edit Input Property for Service dialog box fields,
subfields, and field groups. A field group is a collection of fields that are related to a specific
action or configuration.

When you enter information in a dialog box, if the information is not valid, errors that include a
description of the problem appear at the top of the box.

Table 1 Definitions Field Group

Field

Subfield

Description

Key: *

Input property key name.

Display Name: *

Name of the input property.

Description: - Description of the input property.

Property Group: - Select the property group to which the property
belongs.
You can also choose Create New Property Group
to create a new property group.

Visibility: - Choose whether properties are visible on both the

Edit and Submit windows, or only on the Edit
window.

Chapter 4: Creating a new service template

Hitachi Ops Center Automator Service Builder User Guide 56

Create/Edit Input Property for Service dialog box

Field

Subfield

Description

Display Settings:

Specifies the display setting for the input property.
The choices are:

* Editable
* Read only
* Hide

Service Share
Property:

Enable Service Share Property to add the service
as a Service plug-in after the release process.

Required:

Specifies that the property is required when this
check box is checked.

Data Type:

Select a data type of the property: string, boolean,
integer, double, date, password, composite.
Various options that specify restrictions on the
data entry are visible depending on the option you
chose.

When using arrays, verify the Array Type option
for the data type to be handled as an array. By
doing this, a set of the properties of the same type
(number of elements is variable) can be handled
as a single property making data mapping easier,
especially when passing data between a service
and the plug-ins.

Content Type:

Select the content type:
= application/json

= application/javascript
= application/xml

* text/html

* text/plain

* text/csv

= application/octet-stream

Domain Type:

Select the domain type from the list or add a new
domain type by clicking Add New Domain Type
and entering the details in the Create Domain
Type Definition dialog box. This option is
available when you choose composite for the
Data Type and application/json for the Content
Type.

Fields with an asterisk (*) are required.

Chapter 4: Creating a new service template

Hitachi Ops Center Automator Service Builder User Guide 57

Create/Edit Input Property for Service dialog box

Table 2 Restrictions Field Group

Field

Subfield

Description

Minimum Value:

Specifies the minimum value. This input field is
visible when you choose integer, double, or date
for the Data Type.

Maximum Value:

Specifies the maximum value. This input field is
visible when you choose integer, double, or date
for the Data Type.

Minimum Length:

Specifies the minimum length of the property.
This input field is visible when you choose string
or password for the Data Type.

Maximum Length:

Specifies the maximum length of the property.
This input field is visible when you choose string
or password for the Data Type.

Restricted Character: -

Specifies the allowed characters by using a
regular expression. This input field is visible
when you choose string or password for the Data
Type.

Example: A[0-9a-zA-Z\\-]*$

Minimum Array
Length:

Specifies the minimum length of array elements.

Maximum Array
Length:

Specifies the maximum length of array elements.

Validation Script:

Script that validates the property based on the
associated Javascript code.

Table 3 Value and Presentation Field Group

Field

Subfield

Description

Presentation:

Specifies the property presentation. The
available presentation values appear in the list
depending on the Data Type.

Default Value:

Specifies whether the default value for the
property is true or false.

When specifying the Array of option, the default
value must be written as a comma-separated
string value surrounded by brackets.

Example: [||1 ||’||2||’u3u]

Chapter 4: Creating a new service template

Hitachi Ops Center Automator Service Builder User Guide

58

Create/Edit Input Property for Service dialog box

Field

Subfield

Description

Data Source:

Specifies whether the data is Static or Dynamic
and obtained from an external resource provider.

Specify List ltems: -

Specifies the Specify List Items when the data
source for the property is static (when you
choose the Static option for the Data Source.)

External Resource: -

Specifies the external resource provider when
the data source for the property is dynamic
(when you choose the Dynamic option for the
Data Source).

In the list, you can also add, edit, upload, or
delete for the external resource provider.

Extra Path:

Specifies the extra path portion of the request
URL. Leave it empty if it is not required. The
extra path is the path that follows the external
resource provider ID in a URL as follows:

/Automation/v1/objects/ExternalResources/
<external resource provider ID>/<extra path>?
<query parameters>

Query Param:

Specifies the query parameter for the external
resource provider. The serviceID and
serviceTemplateID parameters are added
automatically. You can specify {$ref:keyName} to
refer to the value of other properties in the same
property group. For a JSON value, you can
specify {$ref:keyName#json path}.

Name Field: - Specifies the field name to use as the label
visible in the list. If omitted, uses the name field.

Value Field: - Specifies the field value to use as the value of
the property visible in the list. If omitted, uses the
instance ID field.

Show If: - Specifies to show the property entry if the
specified conditions are met.

Enable If: - Enables the property if the specified conditions

are met.

Chapter 4: Creating a new service template

Hitachi Ops Center Automator Service Builder User Guide 59

Create/Edit Input Property for Service dialog box

Creating a validator script for verifying an input property

If the validation options are not adequate, you can create a script. Following is an example of
a validator script written in Javascript code that verifies whether a value entered by the user
is a number less than the maximum allowable value of 1024:

function (propertyValue, lang, displayType) {
var jObject = JSON.parse (propertyValue.value) ;
if (displayType == "config") {
if(jObject.luSize > 10) {
return "lu size should be under 10"
}
if(jObject.blockSize > 2){

return "block size should be under 2";

return

}

The following table shows the validator script specifications for the input property.

Name Description
Validator script format function (arg1, arg2, arg3) {
llcode
}

Validator script arguments | arg1:

Property value in string format

arg2:

Locale string. (for example, ja or en)
arg3:

Operating information when script is running (Operation with
task creation: exec, Editing operation of properties: config)

Validator scrips return Success:
value*®)
undefined, null
Failure:

Error message in array or string format

* If the value is not a number or is larger than the specified maximum, a message appears
in the user interface.

Chapter 4: Creating a new service template

Hitachi Ops Center Automator Service Builder User Guide 60

Create/Edit Input Property for Service dialog box

Using external resource data for input properties

When you specify "Selection" as the input property presentation, you can use the external
resource data listed in the menu. You can create the external resource provider by using
Service Builder to set up and access the external resource data.

Create an external resource provider by using Service Builder

You can create a new external resource provider by clicking Add New External Resource
Provider at the bottom of the list. You can also specify an existing external resource provider
from the list.

In the Create External Resource Provider dialog box, enter the following information:
* Name: Specifies the name of the external resource provider.

* Version: Specifies the version number.

= Content Type: Selects either application/json or text/csv.

*= Schema ID: Specifies the schema ID of the domain type corresponding to the external
resource provider. This helps users select an external resource provider in the property for
service and plug-in setting dialog boxes; in the list of external resource providers, those
with the same schema ID as the selected domain type are highlighted in blue.

= Description: Specifies a description for the external resource provider.

* Type: Select either Javascript, Script, Command Line, or File. Depending on your
selection, enter the required information in the field.

When specifying Javascript for the type

The following table shows the Javascript specifications for the external resource provider.

Name Description

Script format function fn (requestPath, queryParamMap, properties) { // code }

Arguments of script | requestPath:

A value of Extra Path which is specified in the Create/Edit Input
Property for Service dialog box.

queryParamMap:

A JSON object including key-value maps which is specified as
Query Param in the Create/Edit Input Property for Service dialog
box.

properties:

A JSON object including service share properties and reserved
properties which is related to external resource provider. The
reserved properties are the following:

= reserved.external.ncmds.dir

* reserved.external.path

Chapter 4: Creating a new service template

Hitachi Ops Center Automator Service Builder User Guide 61

Create/Edit Input Property for Service dialog box

Name Description

= reserved.external.query

* reserved.external.resource.dir

* reserved.external.userName

You can obtain the value of the property using properties["property

key"].

Return value of script | Return an array of JSON objects which are listed in the menu. The
array to be returned must be set to a property named "data".

In the script, you can use one of the following utility functions:
* Built-in CM-REST methods
* env function

= auto util library

Using the built-in CM-REST methods

You can use the modules that are available in the JavaScript Plug-in for Configuration
Manager REST API as follows:

* ConfigurationManager. 0x_xx_xx.api

* ConfigurationManager. 0x_xx_xx.model

* ConfigurationManager._0x_xx_xx.enum

* ConfigurationManager._0x_xx_xx.lib
Note: " 0Ox_xx_xx" is corresponding to the version of the JavaScript Plug-in for
Configuration Manager REST API. When the version is 01.51.01, it will be
" 01_51_01".

Using env functions

You can use "env" functions to get context information. The following table shows the
specification of the functions of the env object.

Function Description

env.getWebServiceConnections(cate | Get a listing of Web Service Connections.

gory) Input parameters:

category: Category name of Web Service
Connection.

Chapter 4: Creating a new service template

Hitachi Ops Center Automator Service Builder User Guide 62

Create/Edit Input Property for Service dialog box

Function

Description

Return value: A listing of JSON objects of Web
Service Connections with the same category name
as the one specified as an input parameter. When
the external resource provider is called by a
service, Web Service Connections that are
accessible by the service are obtained by
considering the defined relation between Service,
Service Group, Infrastructure Group, and Web
Service Connection.

env.setWebServiceConnection(apiOb
ject, category, name, basePath)

Set the Web Service Connection to the apiObject.
The Web Service Connection is used in the
external connection by the specified apiObject.

Input parameters:

= apiObject: Instance of ObjectsApi of the built-in
CM-REST module.

= category: Category name of Web Service
Connection.

= name: Name of Web Service Connection

* basePath: A path following a port number in the
URL, which start with "/".

Return value:

No return value.

env.setHTTPProxy(apiObject, host,
port, authenticationSchema,
userName, password)

When you do not use a Web Service Connection,
set the HTTP Proxy settings to the apiObject.

Input parameters:

= apiObject: Instance of ObjectsApi of the built-in
CM-REST module.

* host: Host name or URL of the proxy server.
= port: Port number of the proxy server

= authenticationSchema: basic or digest

= userName: User name to authenticate.

= password: Password to authenticate.
Return value:

No return value.

Chapter 4: Creating a new service template

Hitachi Ops Center Automator Service Builder User Guide 63

Create/Edit Input Property for Service dialog box

Function Description

env.getServiceTemplate() Get the object of the service template by calling the
external resource provider.

Input parameters:

No input parameters. Return value: Service
template object

env.getService() Get the object of the service by calling the external
resource provider.

Input parameters:

No input parameters. Return value: Service object

Using the auto util library

You can also use the auto util library. Seethe auto util library inthe
JavaScript Plug-in topic for more information.

Following is an example using the env function and the built-in CM-REST methods:

function fn(requestPath, queryParamMap, properties) {

//Step 1. Instantiate the API Client.

var client = new ConfigurationManager. 01 51 00.api.ObjectsApi ()

//Step 2. Specify the User Credentials. There are two methods for specifying user
credentials. You can use either method, but the first one is recommended.

//Method 1. Specify credentials by using the Web Service Connection (recommended) .

//Get accessible Web Service Connections by specifying a category name, and specify
it. You do not need to specify credentials in a script.

var wsc = env.getWebServiceConnections ("ConfigurationManager");

env.setWebServiceConnection (client, wsc[0].productName, wsc[0].name, "/
ConfigurationManager") ;

//Method 2. Specify credentials directly.

//You can pass arguments by using the plug-in input properties or you can specify
them directly in a script. For example, you can pass url and port number through the
query parameters (queryParamMap) .

//client.getApiClient () .setUsername (queryParamMap.username) ;

//client.getApiClient () .setPassword (queryParamMap.password) ;

//client.getApiClient () .setBasePath ("http://" + queryParamMap.url + ":" +
queryParamMap.port + "/ConfigurationManager/");

//Step 3. Get Session

//You can pass arguments by using the plug-in input properties or you can specify
them directly in a script. For example, you can pass the device ID through the query
parameters (queryParamMap) .

var responseBody =
client.vl.objects.storages.storageDevicelD.sessions.post (queryParamMap.deviceld,
null, null);

var token = responseBody.getToken () ;

var sId = responseBody.getSessionId();

Chapter 4: Creating a new service template

Hitachi Ops Center Automator Service Builder User Guide 64

Create/Edit Input Property for Service dialog box

//Step 4. Call the API that is associated with your use case based on the session
obtained in Step 3.
client.getApiClient () .setApiKeyPrefix ("Session");
client.getApiClient () .setApiKey (token) ;
var pools =
client.vl.objects.storages.storageDeviceID.pools.get (queryParamMap.deviceId, "DP",
null, null);
//Step 5. Make an array containing the required information.
//An array to be returned has to be set to a property named "data".
var ret = { "data": [] };
var p;
for (var i = 0; i < pools.getData().length; i++) {
p = pools.getData() [i];
ret.data.push ({
"Pool ID": p.getPoolId(),
"Pool Type": p.getPoolType(),
"Num of LDEVs": p.getNumOfLdevs ()
});
}

//Final Step. Discard Session.

client.vl.objects.storages.storageDeviceID.sessions.sessionId.delete (queryParamMap.dev

iceId, sId, null, null, null);

return ret;

When specifying Script for the type

Python is supported as a script type. Specify the path to the Python interpreter that runs the
script, and edit a script. The supported versions of Python are version 3.x series. To use this
external resource provider in a cluster environment, the Python interpreter must be installed
on both the active and standby systems. This external resource provider does not support a
virtual Python environment.

Environment variables that can be referenced from the script

The following table shows the environment variables that are allowable in the script. You can
get the values for the following environment variables in the os.environ[key-name] or

os.environ.get (key—-name) format.

Environment variable Description Format

REQUEST_PATH Information specified as String
Extra Path in the Create/Edit
Input Property for Service
dialog box

/external-resource-provider-
ID/value-specified-as-extra-
path

Chapter 4: Creating a new service template

Hitachi Ops Center Automator Service Builder User Guide 65

Create/Edit Input Property for Service dialog box

Environment variable

Description

Format

QUERY_PARAM_MAP

Information specified as
Query Param in the Create/
Edit Input Property for
Service dialog box

JSON format

{property-name:value, ...}

SERVICE_TEMPLATE_ID

ID of the service template to
which the Python plug-in
belongs

Numerical value

SERVICE_ID

ID of the service running the
Python plug-in

Numerical value

SERVICE_TEMPLATE

Information about the service
template to which the Python
plug-in belongs

JSON format

{service-template-
attribute:value, ...}

SERVICE

Information about the service
running the Python Plug-in

JSON format

{service-attribute:value, ...}

STORAGE_PROFILES

Information about the
Storage Profile

JSON format

[{ StorageProfile-
attribute:value, ... }, ...]

WEB_SERVICE_CONNECT
IONS

Settings information for the
Web Service Connection.
This corresponds to the
query parameters
("_webServiceConnectionC
ategory__ " and

" webServiceConnectionN
ame__ ") specified in Query
Param seen in the following
table.

JSON format

[{ WebServiceConnection-
attribute:value, ...}, ...]

Query Param Parameters

__webServiceConnectionC
ategory_

__webServiceConnectionN
ame

Reference information

Parameter is specified. (Y)

Parameter is specified. (Y)

Web Service Connection
information that coincides
with the specified Category
and Name

Chapter 4: Creating a new service template

Hitachi Ops Center Automator Service Builder User Guide

66

Create/Edit Input Property for Service dialog box

Query Param Parameters

__webServiceConnectionC | _ webServiceConnectionN

ategory___ ame__ Reference information
Parameter is specified. (Y) Parameter is not specified. Web Service Connection
(N) information that coincides

with the specified Category

Parameter is not specified. Parameter is specified. (Y) None
(N)
Parameter is not specified. Parameter is not specified. None

(N) (N)

When specifying command line for the type
Enter the command line to run.
* An error is generated if the return value of the command is not 0.

* The upper limit for standard output is 30 MB and an error is generated if this limit is
exceeded.

* When specifying a script file, use the absolute path because the current path is not
specified.

* The service share property and the reserved property can be included in a command line.

If including a service share property or a reserved property, surround the property key with
||${u and ll}ll.

The character set for a standard output assumes the character set of the system and the
associated user. (For example, in the case of Windows OS with Japanese Locale,
MS-932, and in the case of Linux OS, the user who last ran the start command.)

In the command line, you can refer to the values for the environment variables. The
referable environment variables are the same as when specifying Script for the type. Note
that the method of obtaining the value for the environment variable depends on the script
language, as shown in the following table.

Item How to get the environment variable value
Command script (Windows) Y%key-name%
Shell script (Linux) $key-name
PowerShell script $env:key-name

Chapter 4: Creating a new service template

Hitachi Ops Center Automator Service Builder User Guide

67

Create/Edit Input Property for Service dialog box

The following example shows how host names are acquired through a program such as
Powershell, and are then visible in a list as follows:

Command line:
powershell.exe \"& 'S${reserved.external.resource.dir}\\getHosts.psl' $

{reserved.external .hcmds.dir} S{reserved.external.userName}\"

Output of a command line:
name, instancelID
hostl,123

host2,124

host3,125

host4,126

host5,127

The list item displayed on the Config/Submit window of the service:
hostl
host2
host3
host4
hostb

When specifying file for the type

Enter the path of the files. The service share property and the reserved property can be
included in a file path. If including a service share property or a reserved property, surround
the property key with "${" and "}".

In the following example, the host data is acquired from JSON file and output by using
another application.

File:

$S{reserved.external.resource.dir}\\vm. json

vm.json

{

"data" :[{
"instanceID" :127,
"name" :"testl"
e Ao
"instanceID" :128,
"name" :"test2"
bl

}

The list item displayed on the Config/Submit window of the service:
testl
test2

Chapter 4: Creating a new service template

Hitachi Ops Center Automator Service Builder User Guide 68

Create/Edit Domain Type Definition dialog box

Upload a file to an external resource provider

You can upload files to an external resource provider by clicking Upload in the external
resource provider list. You can update a .zip archive file. After updating files, you can specify
the relative path name in the command line as a file path.

Delete an external resource provider

You can delete an external resource provider by clicking Delete in the external resource
provider list. When you click Delete, the Delete Confirmation dialog box appears. The dialog
box lists the service templates and plug-ins using the external resource provider you plan to
delete. When you confirm that there is no related service templates and plug-ins, click OK
and the external resource is deleted. If you delete an external resource provider that is used
by a service template, the external resource provider no longer works with the service
template.

Create/Edit Domain Type Definition dialog box

You can edit the schema for a selected domain type by selecting the Domain Type option
available from the Create/Edit Input/Output Property for Service dialog box and then
clicking the plus sign or wrench icon next to the domain type.

The following table describes the Edit Domain Type Definition dialog box fields, subfields,
and field groups. A field group is a collection of fields that are related to a specific action or
configuration.

When you enter information in a dialog box, if the information is not valid, errors that include a
description of the problem appear at the top of the box.

Field Subfield Description
Domain Type - Specifies the name for the domain type.
Name:
Domain Type ID: | - Specifies an ID (address) for the domain type.
Domain Type - Specifies the schema for the domain type.
Schema:

The format conforms to the JSON schema (http://json-
schema.org/).

Generate - Generates a GUI Definition based on the domain type
Template schema. You do not need to enter the GUI Definition
(Button): from scratch because the basic structure is the same

as for the Domain Type ID.

GUI Definition - Specifies Ul definition ID.
ID:
GUI Definition: - Specifies the Ul definition.

Fields with an asterisk (*) are required.

Chapter 4: Creating a new service template

Hitachi Ops Center Automator Service Builder User Guide 69

Create/Edit Domain Type Definition dialog box

The following table shows the property definition attributes in the GUI Definition.

Key

Description

displayName

Display name of property.

description

Description of property.

presentation

Presentation type of property. "input”,

"textarea", "url", "select”, "radio", "check
box", "spinbox", "capacity", "capacitylnKB",
"capacitylnMB", "capacityInGB",
"capacityInTB", "capacityiB",
"capacityInKiB", "capacityInMiB",
"capacitylnGiB", "capacityInTiB",
"datePicker", "hex", or "file".

permission

Permission of property; "locked", "unlocked",
or "hidden"

visibility

Visibility of property; "exec" or "config"

required

Specifies whether the property is required;
true or false.

pattern

Accepted regular expression pattern of the
property value.

validationScript

Validation script of the property value.

showlf

Show condition of property.

enablelf

Activate condition of property.

enum

Specifies an array. You can define JSON
objects in it.

enumDataSource

Specifies an external resource provider as in
the following example:

"enumDataSource": {
"url":"/Automation/vl/objects/
ExternalResources/1eb39858-48b5-4d3a-
b82a-9af5c91laf8c4",

"contentType": "application/json",
"nameField": "hostGroupName",
"valueField": "id"

}

contentType

Content type of composite type; "application/
json", "application/javascript", "application/
xml", "text/html", "text/plain”, "text/csv", or
"application/octet-stream"

Chapter 4: Creating a new service template

Hitachi Ops Center Automator Service Builder User Guide 70

Create/Edit Domain Type Definition dialog box

Key

Description

hidden

Show or hide a column in a table.
true: Hide a column by default.

false: Show a column by default.

Following are examples of the domain type schema and Ul definition representing a volume

setting in the built-in Allocate Volume service:

Domain type schema

"type": "object",
"properties": {

"values": {

"type": vvarray",

"title": "Volume Settings",

"minTtems": 1,

"maxItems": 10,

"items": {

"type": "object",

"properties": {

"usage": {

"type":

"string",

"minLength":

"maxLength":

"pattern”: "A[A-Za-z0-9 ~!@#\\$S\\ & () ANNHENN==ANVONN AN IANNT "\ L s,

"default": ""

by

"numberOfVolumes":
"type": "integer",
"minimum": 1,
"maximum": 500,
"default": 2

by

"capacity": {
"type": "integer",
"minimum": 10,
"maximum": 200,
"default": 50

by

"storageProfile":
"type": "string",
"enum": [

"Gold Write",

"Silver Write"

] 14

"default":

"Gold Write"

Chapter 4: Creating a new service template

Hitachi Ops Center Automator Service Builder User Guide 71

Create/Edit Domain Type Definition dialog box

bo
"ldevLabel": {
"type": "string",
0,
64,

"M A-Za-20-9 ~!EHFNNSSANNAENNHF O NNHNN==AN NN NN INNTAN |25 P <AL

"minLength":
"maxLength":
"pattern":
2NN/ 1*8",
"default": ""
b
"ldevSetting": {
"type": "object",
"properties": {
"fullAllocation": {
"type": "string",
"enum": [
"Enable",
"Disable"

] r

"default":

}!
"lunSetting": {
"type":

"properties": ({

"Disable"

"object",

"lunStartsFrom": {

"type":

"description":

"default":
"minimum" :

"maximum" :

"integer",

"Enter a value in hex format.",
0,

0,

2047

GUI definition

"displayName": "Volume Settings",
"properties": {
"values": {

"displayName": "Volume Settings",

"showLabel": false,
"permission": "locked",
"visibility": "exec",

Chapter 4: Creating a new service template

Hitachi Ops Center Automator Service Builder User Guide 72

Create/Edit Domain Type Definition dialog box

"items": {
"displayName": "Volume Setting",
"properties": {
"usage": {
"displayName": "Volume Usage",
"permission": "unlocked",
"visibility": "exec",
"required": true
by
"numberOfVolumes": {
"displayName": "Number of Volumes",
"permission": "unlocked",
"visibility": "exec",
"required": true
by
"capacity": {
"displayName": "Volume Capacity",
"permission": "unlocked",
"visibility": "exec",
"required": true,
"presentation": "capacityInGB"
by
"storageProfile": {
"displayName": "Storage Profile",
"permission": "unlocked",
"visibility": "exec",
"required": true,
"presentation": "select"
by
"ldevLabel™: {
"displayName": "Volume Label",
"permission": "unlocked",
"visibility": "exec",
"required": false
by
"ldevSetting": {
"displayName": "LDEV Setting",
"permission": "unlocked",
"visibility": "exec",
"properties": {
"fullAllocation": {
"displayName": "Full Allocation",
"visibility": "exec",
"permission": "unlocked",
"required": true,
"presentation": "select"
}
}
br
"lunSetting": {
"displayName": "LUN Setting",

Chapter 4: Creating a new service template

Hitachi Ops Center Automator Service Builder User Guide 73

Adding output properties

"permission": "unlocked",
"visibility": "exec",
"properties": {
"lunStartsFrom": ({
"displayName": "LUN Starts From",
"visibility": "exec",
"permission": "unlocked",

"required": true

Adding output properties

You can specify the output properties for a property group associated with a service template.

A list of properties is shown.

Before you begin

A service template in the Developing state must exist with steps you added to the Flow View.

Procedure

1.

From the Service Builder Edit window Property tab, go to the Add menu and choose
Output Property.
The Create Output Property for Service dialog box appears.

You can also add output properties from the Specify Component Output Property
Mapping Parameters dialog box under the Flow tab, by clicking the pencil icon in the
Value field of the Step Properties area of the window.

Click Add Output Property.
The Create Output Property for Service dialog box appears.

Enter the details for the output property.

Click OK to save the output property details.
The specified output property appears in the output property list.

Create/Edit Output Property for Service dialog box

You can add output properties for a service template from the Create/Edit Output Property
for Service dialog box.

The following table describes the Create/Edit Output Property for Service dialog box fields,
subfields, and field groups. A field group is a collection of fields that are related to a specific
action or configuration.

Chapter 4: Creating a new service template

Hitachi Ops Center Automator Service Builder User Guide 74

Create/Edit Output Property for Service dialog box

When you enter information in a dialog box, if the information is not valid, errors that include a
description of the problem appear at the top of the box.

Table 4 Definitions Field Group

Field

Subfield

Description

*

Key:

Output property key name.

Display Name: *

Name of the output property.

Description:

Description of the output property.

Property Group:

Select the property group to which the property
belongs.

You can also choose (Create New Property
Group) to create a new property group.

Display/Hide:

Specifies the display setting for the output
property. The choices are:

* Display
* Hide

Data Type:

Select a data type of the property: string, boolean,
integer, double, date, password, composite.
Various options are specifying restrictions on the
data entry are visible depending on the option you
choose.

When dealing with arrays, you can verify the
Array Type option for the data type to be handled
as an array. In this way, a set of the properties of
the same type (number of elements is variable)
can be handled as a single property making data
mapping easier, especially when passing data
between a service and the plug-ins.

Content Type:

Select the content type:
* application/json

= application/javascript
= application/xml

* text/html

= text/plain

* text/csv

= application/octet-stream

Chapter 4: Creating a new service template

Hitachi Ops Center Automator Service Builder User Guide 75

Adding variables

Field

Subfield

Description

Domain Type:

Select the domain type from the list or add a new
domain type by clicking Add New Domain Type
and entering the relevant details from the Create
Domain Type Definition dialog box.

This option is available when you choose
composite for the Data Type and application/json
for the Content Type.

Fields with an asterisk (*) are required.

Table 5 Value and Presentation Field Group

Field

Subfield

Description

Presentation:

Specifies the property presentation. The
presentations types are visible in the list
depending on the Data Type.

Default Value:

Specifies the default value for the property. The
values that can be specified differ depending on
the Data Type.

Show If: - Shows the property entry if the specified
conditions are met.
Enable If: - Enables the property if the specified conditions

are met.

Adding variables

You can add variables for a property group associated with a service template.

A list of properties for a Property Group are visible on the Property tab.

Before you begin

A service template in the Developing state must exist with steps you added to the Flow view.

Procedure

1. From the Service Builder Edit window Property tab, go to the Add menu and choose

Variable.

The Create Variable dialog box appears.

2. Enter the details for the variable you are adding. You can add a service share property
to a property group from the Property Group menu. You can also specify the data type
and associated default value.

Chapter 4: Creating a new service template

Hitachi Ops Center Automator Service Builder User Guide 76

3. Click OK.

Create/Edit Variable dialog box

The variable is added to the service template.

Next steps

Map the variable to the output value.

Create/Edit Variable dialog box

You can enter or edit a variable property for a service template from the Create/Edit Variable

dialog box.

The following table describes the dialog box fields, subfields, and field groups for the Create/
Edit Variable dialog box. A field group is a collection of fields that are related to a specific
action or configuration.

When you enter information in a dialog box, if the information is not valid, errors that include a
description of the problem appear at the top of the box.

Table 6 Definitions Field Group

Field

Subfield

Description

Key Name:*

Variable key name.

Display Name:*

Variable name.

Description:

Variable description.

Property Group:

"Default Properties" are set. For variables, you
cannot change this item.

Data Type:

Select a data type of the property: string, boolean,
integer, double, date, password, composite. The
various options depend on which option you
choose. For example, if you choose the date
option, a calendar interface appears.

When using arrays, verify the Array Type option
for the data type to be handled as an array. In this
way, a set of the properties of the same type
(number of elements is variable) are handled as a
single property making data mapping easier,
especially when passing data between a service
and the plug-ins.

Content Type:

Select the content type:
= application/json

= application/javascript
= application/xml

= text/html

Chapter 4: Creating a new service template

Hitachi Ops Center Automator Service Builder User Guide 77

Example of creating a new service template

Field Subfield Description

* text/plain
= text/csv

= application/octet-stream

Domain Type: - Select the domain type from the list or add a new
domain type by clicking Add New Domain Type
and entering the details from the Create Domain
Type Definition dialog box. This option is
available when you choose composite for the
Data Type and application/json for the Content
Type.

Fields with an asterisk (*) are required.

Table 7 Value and Presentation Field Group

Field Subfield Description

Default Value: - Enter the default value of the variable.

Example of creating a new service template

This section describes the process of customizing a service template that provisions volumes
for a specific platform and adds a component step that generates an email notification
indicating whether the volume allocation was successful.

For this example, you complete the following procedures:
1. Make a copy of an existing service template and provide the details for the new service
template.
2. Add an email naotification plug-in and modify it for your environment.
3. Establish the flow for the component steps.
4. Test the new service template.

a Note: The example assumes that you have considered the system's architecture
and completed the calculations necessary to create a service based on the
required storage size, configuration, and I/O profile. Although the template values
are based on the best practices, the values you set depend on your requirements.

To begin this example, you must first access the Service Builder Home window by going to

the Tools menu and choosing Service Builder. The Service Builder Home window shows all
the Service Builder options for creating and managing service templates and the associated
plug-ins.

Chapter 4: Creating a new service template

Hitachi Ops Center Automator Service Builder User Guide 78

Making a copy of an existing service template

Making a copy of an existing service template

You must be a service administrator with the Develop role to complete the following steps:

Procedure

1.

From the Service Builder Home window Released tab, select and highlight the template
to copy either from the Card View or Table View. For this example, select the Allocate
Volumes with Smart Provisioning service template.

Click Copy and Edit.
The Copy Service Template dialog box appears.

Enter the basic information as shown in the following table.

Parameter Description Value

Key Name: * - Specifies the key name for the copied service
template. For this example, enter a unique ID,
such as "NewTemplate".

Version * - Version of the service template. This is already
filled in.

Vendor ID: * - Enter a name that identifies the vendor.

Display Name: * | - Name assigned to the copied version of the

service template. This is already filled in.

For this example, enter a name such as
"NewTemplate".

Vendor Name: - Enter a name that identifies the vendor.
Description: - Description of the copied service template.
Tags: - Tag category associated with the service

template. The "Add New Storage" and
"Configuration Manager" tags are already
selected.

Fields with an asterisk (*) are required.

4. Click OK and the new service template is created with the modified details. The

components (plug-ins and possibly other service templates) associated with the copied
template are visible on the Service Builder Edit window Flow tab.

The existing plug-in is already added as a step to the flow from the original service
template that you copied. If you click this step, you can verify the input and output
properties associated with the step.

Chapter 4: Creating a new service template

Hitachi Ops Center Automator Service Builder User Guide 79

Adding email notification for the service template

Adding email notification for the service template
After you make a copy of the service template, you can make the necessary modifications
from the Service Builder Edit window.

To add the Email Notification Plug-in, complete the following steps:

Procedure

1. From the component list, locate the Email Notification Plug-in and drag it to the flow
area of the window on the right. If necessary, you can use the search box to locate the
plug-in. The Create Step dialog box appears.

2. Enter the required details for the plug-in step, as shown in the following table.

Parameter Description Value
Step ID: * - Specifies the ID for the Email Notification Plug-in.
This is already filled in.
Step Name: * - Name assigned to the plug-in step. This is already
filled in.
Description: - Optional description of the copied service template.

Fields with an asterisk (*) are required.

3. Click OK to add the selected plug-in. A graphic for the newly added plug-in step is
shown in the flow area of the window.

4. Specify the run order for the newly added plug-in step by clicking the dot next to the
existing plug-in graphic and dragging the arrow over the Email Notification Plug-in
step. An arrow shows the direction in which the service template processes the plug-in
steps when you run the service.

5. Specify the input properties for the newly added plug-in step. For example, you can
enter a subject for the Subject property or add content for the message body. Because
the values for email notification are different for each user, you might want to verify the
GUI Visibility check box for the "To Addresses" property so a user can enter a relevant
email address from the Edit or Submit windows when running the service.

To enter a relevant email address from both the Edit and Submit windows, change the
visibility for the "To Addresses" property to "Edit and Submit Window" from the Property
tab.

Debugging, building, testing, and releasing the new service template

After creating and adding the required plug-ins, you can build the service template, test and
debug it, and then release it.

Chapter 4: Creating a new service template

Hitachi Ops Center Automator Service Builder User Guide 80

Debugging, building, testing, and releasing the new service template

Procedure

1.

Click the Debug tab and then click OK to build the service template with the added plug-
ins.

The Build / Release Result dialog box appears showing any errors that occurred while
building the service template.

Continue to troubleshoot any errors until the build completes successfully, then click
Close to exit the Build / Release Result dialog box.
If the build is successful, the Perform Debugging dialog box appears.

Verify that the service template is functioning correctly. To accomplish this, you must
return to the main Ops Center Automator Ul where you can create a request and submit
the service request for the service template.

On the Services tab, click Create, select "NewTemplate" on the Select Service
Template window, then click Create Service. In the Create Service window, click Save
and Close.

On the Services tab, select "NewTemplate" in Debug status, then click Create Request.
In the Submit Service Request window Settings pane, enter the following information.

Parameter Description Values

Volume Settings

Configuration Manager | Configuration Manager connection | Select the

Connection Configuration Manager
Connection from the
table.

Host Settings

Number of Hosts The number of hosts for which to Single
allocate volumes.

Host Name Host name Enter the host name.

WWN Settings WWN settings Click the + icon and
enter the information.

Task Settings

Task Name Name of the task NewTemplate

Description Brief task description A task to generate an
email for the service.

Schedule Type Time the task runs Immediate

After you finish entering the required values, click Submit, then click OK in the Submit
Service confirmation dialog box.

On the Tasks tab, in Debug view, select the "New Template" task, then click Show
Details to view the task summary, details, result, log, and notes.

Chapter 4: Creating a new service template

Hitachi Ops Center Automator Service Builder User Guide 81

Debugging, building, testing, and releasing the new service template

9. After testing the service template to verify that the new service template is functioning
correctly, you can return to the Service Builder Edit window, then click the Release tab
to make the template available for users to submit.

Chapter 4: Creating a new service template

Hitachi Ops Center Automator Service Builder User Guide 82

Chapter 5: Creating a new plug-in

You can make a copy of an existing plug-in and then modify it, or you can create a new plug-
in that runs commands, runs scripts, and completes the standard tasks for a service
template.

Each plug-in has a purpose and the use and sequence in a service template is an important
part of creating a service template.

Plug-in creation workflow

You manage and create new plug-ins from the Service Builder Home window Custom Plug-in
Actions menu.

Use the Custom Plug-in Actions menu to edit, copy, or delete an existing plug-in.

When creating a new plug-in, you must complete the phases described in the following
workflow:

Phase 1 - Preparation

1. Decide the purpose of the plug-in. Consider the steps for automating the process and
determine if one or more plug-ins are required and if you can modify an existing plug-in
or you must create a new plug-in.

2. Prepare to create the plug-in. This involves defining the plug-in and the associated icon
file, preparing the required commands or scripts to run tasks, and preparing resource
files.

Phase 2 - Creation
1. Create a new plug-in or copy and modify an existing plug-in. The plug-in is now in the
Developing state.
2. Enter the standard information and set input and output properties.

3. Set the remote commands and environment variables as required.

Phase 3 - Testing

1. While developing a service template, drag the plug-in to the template flow.
Build the service template for testing.

Complete testing.

Debug the plug-in.

o b

Rebuild and retest the service template until the plug-in runs successfully in the
template.

Phase 4 - Releasing

Chapter 5: Creating a new plug-in

Hitachi Ops Center Automator Service Builder User Guide 83

Creating a plug-in

Release the service template. The status of the service template and the related plug-ins
changes to Released.

Creating a plug-in

You can create a plug-in based on one of the standard plug-ins, or you can create a new
plug-in that runs the commands or scripts for a step in a service template.

Note: You cannot duplicate a plug-in with the same Plug-in key name, Vendor ID,
and Version Number.

Before you begin

Determine how to handle the script input properties and the method to deliver an output
property.

If running a script by file, create the script files.

Procedure

1.

From the Service Builder Home window, access the Custom Plug-in Actions menu
and choose Copy to use one of the existing plug-ins as a model, or choose Create to
create a new plug-in from scratch.

The Copy Custom Plug-in or Create Custom Plug-in dialog box opens depending on
your choice of creation methods.

From the General tab, enter the basic information for the plug-in.

From the Property tab, click the input or output property icons and then add the input
and output properties associated with the plug-in. You can add multiple input properties
and drag and drop within the section to change the order of the input properties.

From the Remote Command tab, click Add Platform to select an Operating System.
Specify the Credential Type and other plug-in details.

If remote commands or the script need environment variables, click Details and then
click Add to enter the environment variable name and value.

Finish adding variables, then click Save.

Result

A new plug-in is created in the Developing state, which can be accessed from the Service
Builder Edit window Flow tab.

Create/Edit Custom Plug-in dialog box

When you create a new plug-in, you provide the details from the General, Property, or
Remote Command tabs in the Create/Edit Custom Plug-in dialog box.

General Tab

From the General tab, you can view and edit general details for the selected service
template.

Chapter 5: Creating a new plug-in

Hitachi Ops Center Automator Service Builder User Guide 84

Create/Edit Custom Plug-in dialog box

The following table describes the options available from the General tab.

When you enter information in a dialog box, if the information is incorrect, errors include a
description of the problem at the top.

Field Subfield Description

Key Name * - Key name for the plug-in (up to 64 characters). The
combination of the Key Name and Vendor ID cannot
exceed 115 characters.

Version * - Version number of the plug-in.

Vendor ID * - Vendor ID of the plug-in (up to 64 characters). The
combination of the ID and Vendor ID cannot exceed 115
characters.

Display Name - Name of the plug-in (up to 64 characters).

Vendor Name

Vendor name of the plug-in (up to 64 characters).

Description - Brief description of the plug-in (up to 1,024 characters).

Tags - Assigned Tag category for the plug-in. Click the Plus Sign
to add tag categories.

Icon - Specifies the icon graphic (a 48 pixels x 48 pixels PNG

file) associated with the plug-in.

To change the default image provided, click Change and
enter the graphic file name. You can revert to the original
icon anytime by choosing Restore Default Icon.

Fields marked with an asterisk (*) are required.

Property Tab

From the Property tab, you can search for and view the input and output properties for a
service template. You can search for a property with the text search box. Click input or output
(next to search box), to switch between the lists for input and output properties. You can also
edit a property by clicking the pencil icon.

The following table describes the options available from the Property tab.

Field Subfield Description
Key Name - Displays the key associated with the property.
Display Name - Displays the name associated with the property.
Description - Gives a description for the property.

Chapter 5: Creating a new plug-in

Hitachi Ops Center Automator Service Builder User Guide 85

Create/Edit Custom Plug-in dialog box

Field

Subfield

Description

Required

Indicates whether the property is required (true) or
(false).

Default Value

Specifies default values if required.

Remote Command Tab

From the Remote Command tab, you can set up remote commands that run during the

processing of a service template.

To add a remote command, click Add Platform and then provide the details for the OS

environment.

The following table describes the options available from the Remote Command tab.

When you enter information in a dialog box, if the information is incorrect, errors include a

description of the problem at the top.

Field

Subfield

Description

Credential Type

Specifies the credential type required for the plug-in.

To use the credential information in the agentless
remote connections view under the Ops Center
Automator Administration tab when the service runs,
select Shared agentless setting.

Shared agentless setting is the default Credential Type.

The following reserved plug-in property is automatically
set for the shared agentless setting credential type:

* plugin.destinationHost

Enter the target of an action with an IPv4 address,
IPv6 address, or host name (up to 256 characters).

To use the credential information as an input property,
select Service input property.

Chapter 5: Creating a new plug-in

Hitachi Ops Center Automator Service Builder User Guide 86

Create/Edit Custom Plug-in dialog box

Field

Subfield

Description

The following reserved plug-in properties are
automatically set for the Service input property
credential type:

* plugin.destinationHost

Enter the target of an action with an IPv4 address,
IPv6 address, or host name (up to 256 characters).
If the destination host is the Ops Center Automator
Server (localhost), the user ID and the password
are not necessary.

= plugin.account

Enter the user ID for logging on to the target host
(up to 256 characters).

= plugin.password

Enter the password for logging io to the target host
(up to 256 characters).

* plugin.suPassword

Enter the password of the root account used for
logging on to a target host in a Linux OS
environment (up to 245 characters). If the target
host is running the Windows OS, this property is
ignored.

Windows Options

Run as
system
account

Runs the command using the system account.

Linux/UNIX
Options

Execute with
root

Runs with root privileges.

privileges

Character Character Set Auto Judgment applies to the Linux OS.
Set Auto If enabled, the script runs using the default locale of the
Judgment user. If disabled, the script runs with the LC_ALL=C

locale. The default is enabled.

Add Platform

Specifies the platform for the remote command
(Windows or Linux platform).

Import Settings - Specifies to obtain the settings from another OS.
Execution - Select Script name if based on a script, or CLI
Method: Command if using a stored command.

Chapter 5: Creating a new plug-in

Hitachi Ops Center Automator Service Builder User Guide 87

About plug-in properties

Field Subfield Description

CLI Command: * |- Enter the CLI command (up to 8,192 characters) for
the remote command. This is required if you choose
Script name or CLI Command for the Execution
Method. Use Insert All Input Properties to insert all
input properties defined for the plug-in to the
command.

Type in: - Select By attachment if uploading a script file, or Type
in to directly enter the script information.

Use the following file format for a plug-in that runs a
script: name-of-plug-in.extension.

File* - Click Browse to specify the file that contains the
command or script.

Mapping - Specify the mapping definition of the output property
Definition of for a command or script. Select and highlight a
Output Properties property in the list and then click Edit to access the

Edit Output Filter dialog box where you can specify
an output filter that controls the data that is passed to
the output property.

Execution - Specify the folder in which the command or script runs.

Directory

Environment - Select environment variables for the command or script

Variables as required. The Create/Edit Environment Variable
dialog box appears for you to enter the variable
information.

Fields marked with an asterisk (*) are required.

About plug-in properties

You define input and output properties for plug-ins to specify the parameters required when
running a task and processing the results.

You must map the input and output properties of the components for each step with the input
and output properties and variables of the service template. The input properties of the
components used in a service template must be associated with the input properties or
variables, or output properties of other component steps associated with a service template.
The service template input properties store the input values that are required to run a service.
The service template output properties store the results of running the service.

The value of the plug-in input property can be the value that you previously set for the
property, or directly set for the service template. The input property can also be a variable.
You can apply service share properties to the input properties.

Chapter 5: Creating a new plug-in

Hitachi Ops Center Automator Service Builder User Guide 88

Add plug-in input properties

The output property content depends on the type of component. You can store the result of
running a step as output properties. Variables temporarily hold the values that are passed
between components.

The input and output properties of the components are set from the Flow tab of the Service
Builder Edit window. The input and output properties and variables for the service template
are set in the Property tab of the Service Builder Edit window.

Input and output properties can store a maximum of 1,024 characters unless you specify
"composite" as the data type for the Input/Output property. If you specify a value that is more
than 1,024 characters without specifying the composite data type, the first 1,024 characters
are stored as the property value and the remainder are discarded. If you reference the value
of a property key in the format 2dna_property-key?, the referenced value is truncated if it
is more than 1,024 characters.

A plug-in property with a property key and purpose, which are determined in advance, is
called a reserved plug-in property. These properties specify credential information and the
target hosts of remote commands.

Add plug-in input properties

Input properties store the values that plug-ins need when running, such as the arguments for
remote commands or the target host of the action. Create and define input properties from
the Create Custom Plug-in or Edit Custom Plug-in dialog boxes.

From the Service Builder Home window, choose either Create or Edit from the Custom Plug-
in Actions menu.

From the Property tab of the Edit Custom Plug-in dialog box, make sure that the input listing
is selected (by clicking the input property icon) and then click Add to enter the required input
properties. You can add multiple input properties and drag and drop from in the section to
change the order of the input properties.

Continue to enter the properties and remote commands of the plug-in.

Specify/Edit Input Property for Custom Plug-in dialog box

The following table describes the Specify/Edit Input Property for Custom Plug-in dialog
box fields, subfields, and field groups.

When you enter information in a dialog box, if the information is not valid, errors include a
description of the problem at the top.

Chapter 5: Creating a new plug-in

Hitachi Ops Center Automator Service Builder User Guide 89

Specify/Edit Input Property for Custom Plug-in dialog box

Field Group

Field

Description

Definitions

*

Key:

Input property key name.

*

Display Name:

Name of the input property.

Description:

Description of the input property.

Visibility:

Choose whether the input property is visible
on both the Edit and Submit windows [Edit
and Submit Window], or just in the Edit
window [Edit Window Only].

Display Settings:

Specifies the display setting for the input
property. The choices are:

= Editable
* Read only
* Hide

Required:

Specifies that the property is required when
this check box is checked.

Data Type:

Select a data type of the property: string,
boolean, integer, double, date, password,
composite. Various options are presented for
specifying restrictions on the data entry,
depending on the options you chose.

When dealing with arrays, you can verify the
Array Type option for the data type to be
treated as an array. A set of the properties of
the same type (Number of elements is a
variable) can be handled as a single property
to make data mapping easier, especially when
passing data between a service and the plug-
ins.

Verifying the File Reference check box
specifies that the value of the property is
expressed as the file path. The value of the
property is automatically stored in a file, and
you can retrieve the path of the file as an input
property. For example, you can use a file path
in the command line instead of a direct value.

Content Type:

Select the content type:
= application/json
* application/javascript

= application/xml

Chapter 5: Creating a new plug-in

Hitachi Ops Center Automator Service Builder User Guide

90

Specify/Edit Input Property for Custom Plug-in dialog box

Field Group Field Description

= text/html
= text/plain
= text/csv

* application/octet-stream

Domain Type: Enter the domain type from the list or add a
new domain type by clicking the Plus Sign and
entering the details from the Create Domain
Type Definition dialog box. This option is
available when you choose composite for the
Data Type and application/json for the Content
Type.

Restrictions Minimum Value/Length: | Specifies the minimum value for an integer
and double. If the data type is string or
password, then enter the minimum length of
the property. If the data type is date, then
enter the earliest date.

Maximum Value/Length: | Specifies the maximum value for an integer
and double. If the data type is string or
password, then enter the maximum length of
the property. If the data type is date, then
enter the current date.

Restricted Character: If the data type is string or password, then
enter the allowed characters by using a
regular expression.

Example: A[0-9a-zA-Z\\-]*$

Minimum Array Length: | Specifies the minimum length of array
elements.

Maximum Array Length: | Specifies the maximum length of array

elements.
Validation Script: Validates the property based on the
associated javascript code.
Value and Presentation: Specifies options that determine how the
Presentation property selection is presented, depending on

the selected Data Type.

Default Value: Specifies the default value for the property.
The values that can be specified differ
depending on the data type.

When specifying the Array Type option, the
default value must be written as a comma-

Chapter 5: Creating a new plug-in

Hitachi Ops Center Automator Service Builder User Guide 91

Specify/Edit Input Property for Custom Plug-in dialog box

Field Group Field Description

separated string value surrounded by
brackets.

Example. [ll1 ll’ll2ll,ll3|l]

Data Source: Specifies the data as Static or Dynamic and
derived from an external resource provider.

Specify List Items: Specifies the "Specify List Items" when the
data source for the property is derived
statically (when choosing the Static option for
the Data Source).

External Resource: Specifies the external resource provider when
the data source for the property is derived
dynamically (when choosing the Dynamic
option for the Data Source.

In the list, you can also add, edit, upload, or
delete for the external resource provider.

Extra Path: Specifies the extra path portion of the request
URL. Leave it empty if it is not required. The
extra path is the path that follows the external
resource provider ID in a URL as follows:

/Automation/v1/objects/ExternalResources/
<external resource provider ID>/<extra path>?
<query parameters>

Query Param: Specifies the query parameter for the external
resource provider. The serviceID and
serviceTemplateID parameters are added
automatically. You can specify {$ref:keyName}
to embed the property value of other
properties. For a JSON value, you can specify
{$ref:keyName#json path}.

Name Field: Specifies the field name of the object
collection to use the label of the selection. If
omitted, uses the name field.

Value Field: Specifies the field name of the object
collection to use the label of the selection. If
omitted, uses the instance ID field.

Show If: Show the property entry if the conditions are
met.
Enable If: Enable the property if the conditions are met.

Fields marked with an asterisk (*) are required.

Chapter 5: Creating a new plug-in

Hitachi Ops Center Automator Service Builder User Guide 92

Adding plug-in output properties

Adding plug-in output properties

The output properties store the values that plug-ins need when running, for example, the
arguments for remote commands or the target host of the action. Output properties are
created and defined from the Create Custom Plug-in or Edit Custom Plug-in dialog boxes.

From the Service Builder Home window, choose either Create or Edit from the Custom Plug-
in Actions menu.

From the Edit Custom Plug-in dialog box Property tab, verify that the output listing is
selected (by clicking the output property icon) and then click Add to enter the required output
properties. You can add multiple output properties and drag and drop from in the section to
change the order of the output properties.

Continue to enter the input and output properties and remote commands for the plug-in.

Specify/Edit Output Property for Custom Plug-in dialog box

You can add or modify output properties for a service template.

The following table describes the Specify/Edit Output Property for Custom Plug-in dialog box
fields, subfields, and field groups.

When you enter information in a dialog box, if the information is not valid, errors include a
description of the problem at the top.

Field Group Field Description
Definitions Key * Output property key.

Display Name:* Name of the output property.

Description: Description of the output property.

Display/Hide: Specifies the display setting for the output
property. The choices are:
* Display
* Hide

Data Type: Select a data type of the property: string,

boolean, integer, double, date, password,
composite. Various option are presented for
specifying restrictions on the data entry
depending on which of the options are
chosen.

Chapter 5: Creating a new plug-in

Hitachi Ops Center Automator Service Builder User Guide 93

Specify/Edit Output Property for Custom Plug-in dialog box

Field Group Field Description

When dealing with arrays, you can verify
the Array Type option for the data type
treated to be as an array. In this way, a set
of the properties of the same type (Number
of elements is variable) can be handled as
a single property thus making data mapping
easier, especially when passing data
between a service and the plug-ins.

Verifying the File Reference check box
specifies that the value of the property is
expressed as the file path. You can use the
output value in the next step through a file.
For example, when you run the following
command:

<command> > "?dna_output?"

in the plug-in, and "?dna_output?" is
verified in the File Reference, you can store
the output value to the file whose path is "?
dna_output?" and use next step input
value.

Content Type: Select the content type:
* application/json

* application/javascript
= application/xml

* text/html

* text/plain

* text/csv

* application/octet-stream

DomainType: Select the domain type from the list or add
a new domain type by clicking the Plus
Sign (+) and entering the details from the
Create Domain Type Definition dialog
box. This option is available when you
choose "composite" for the Data Type and
"application/json" for the Content Type.

Value and Presentation: Specifies how the property selection is
Presentation presented, depending on the Data Type
that you selected.

Show If: Show if the conditions are met.

Chapter 5: Creating a new plug-in

Hitachi Ops Center Automator Service Builder User Guide 94

Setting remote commands in plug-ins

Field Group Field Description

Enable If: Enable if the conditions are met.

Fields marked with an asterisk (*) are required.

Setting remote commands in plug-ins

Plug-ins use remote commands to pass an input property to a script or command. Remote
commands are also used to filter an output property from the standard result output. Set an
output filter to store the value you want from the standard output. A plug-in needs one or
more remote commands. Environment variables are set through remote commands.

Procedure

1. From the Service Builder Home window, choose either Create or Edit option from the
Custom Plug-in Actions menu. If you are editing an existing plug-in, select the plug-in
from the card or table view, click Edit.

The Create/Edit Custom Plug-in dialog box appears.

2. From the Remote Command tab, click Add Platform to select the operating

environment.
A choice of operating platforms is provided.

3. Choose the platform from the list and then enter the relevant details.
Options are provided depending on the platform you have chosen.

4. Enter all of the details for the remote command and then click Save.
The remote command is created for the selected plug-in.

Setting environment variables

You can set environment variables when creating or editing a plug-in from the Remote
Command tab of the Create/Edit Custom Plug-in dialog box.

Procedure

1. From the Service Builder Home window, choose the Create or Edit option from the
Custom Plug-in Actions menu.
After you have entered the details for a new plug-in, or have selected an existing plug-in
to edit from the Custom Plug-in List dialog box, the Create/Edit Custom Plug-in
dialog box appears.

2. From the Details section of the Remote Command tab, under the Environment
Variables area, click Add.
The Create Environment Variable dialog box appears.

Chapter 5: Creating a new plug-in

Hitachi Ops Center Automator Service Builder User Guide 95

Create/Edit Environment Variable dialog box

3. Enter the relevant attributes (name and value) for the environment variable, then click
OK.
The defined environment variable and its associated value is shown. You can continue
to add more environment variables or edit existing ones.

Create/Edit Environment Variable dialog box

You can enter or modify environment variables for a remote command from the Details
section of the Remote Command tab that you accessed from the Create/Edit Custom Plug-
in dialog box.

The following table describes the Create/Edit Environment Variable dialog box fields,
subfields, and field groups.

When you enter information in a dialog box, if the information is not valid, errors include a
description of the problem at the top.

Field Subfield Description
Name: * - Name of the environment variable.
Value: - Value of the variable.

Fields marked with an asterisk (*) are required.

Adding output filters

Standard output and standard error output are stored in the output property. Therefore, the
best practice is to set filters on the standard output results to obtain the value you want by
using regular expressions in the remote commands.

Example
To obtain the disk ID from the standard output property results, complete the following steps:
1. Set afilter on the output property:
diskid:n is the output method as the result of a script

diskid: (.+) is the regular expression to filter the output property

2. Create a script to pass the results.
3. Use aremote command to set an output filter where:

diskid: (.+) is the output filter
diskid:1 is the standard output string

blank is the value of the output property

Chapter 5: Creating a new plug-in

Hitachi Ops Center Automator Service Builder User Guide 96

Adding output filters

Running the script gives the following results:
* diskid:1 is the standard output string
* 1 is the value of the output property

You specify output filters from the Remote Command tab that is accessed from the Copy/
Edit Custom Plug-in dialog box.

To set an output filter:

From the Mapping Definition of Output Properties area, select and highlight the line of the
output property, then click the edit (pencil) icon. Enter the details in the Edit Output Filter
dialog box.

Continue to set environment variables as required.
5 Note: When specifying multiple groups in a regular expression, only values that
match the first group are stored in the output property. In addition, If the regular

expression applies to multiple value ranges, only the first range of values is
stored in the output property.

Chapter 5: Creating a new plug-in

Hitachi Ops Center Automator Service Builder User Guide 97

Adding output filters

Note: Regular expressions are evaluated in the multiline mode. To eliminate
unwanted characters (including the line feed), you must write the regular
expression specifying the single-line mode. The single-line mode is described as
"(?s)" in the regular expression.

The cutout by the regular expression is the part grouped by the parentheses. The
first group becomes the target of the cutout if multiple groups exist. Here are
some examples of cutting out the standard output using a regular expression.

Example of extracting the string from a single line:

Standard output
server:sv001
CPU - 89%

Memory - 77%

Regular expression

server: (.*)

Result of cutout
sv001

Example of extracting the string with multiple lines - 1:

Standard output
server:sv001
CPU - 89%

Memory - 77%

Regular expression

server: (?s) (.*)

Result of cutout
sv001
CPU - 89%

Memory - 77%

Example of extracting the string with multiple lines - 2:
Standard output

server:sv001

CPU - 89%

Memory - 77%

Regular expression

server: (?s) (.*) \sMemory

Result of cutout

Chapter 5: Creating a new plug-in

Hitachi Ops Center Automator Service Builder User Guide 98

Edit Output Filter dialog box

sv001
CPU - 89%

Edit Output Filter dialog box

You can specify an output filter using a regular expression to control the data that is
processed by the output property. If the output filter is empty, standard output and standard
error output is stored directly in the output property.

The following table describes the Edit Output Filter dialog box fields, subfields, and field
groups.

When you enter information in a dialog box, if the information is not valid, errors include a
description of the problem at the top.

Field Subfield Description

Output Filter: - Enter a regular expression to filter the data stored by
the output property.

Verification of the | - Performs the processing and verifies that the filter is
Output Filter processing the data in the way you intended. The
standard output details and results are shown.

Creating a conditional branch using the branching plug-ins

You can create a conditional branch so that a step within a service template is run only when
a particular condition is met.

A conditional branch is useful for running a step based on a condition that occurs during the
processing of a previous step.

The following plug-ins are provided for creating a conditional branch:

* Branch by Property Value Plug-in: Compares a service property with a specified value (or
if necessary, can also be compared with a variable or step property) and then acts
accordingly.

* Branch by ReturnCode Plug-in: Compares the Return Code generated by a previous step
with a value.

To create a conditional branch:
1. Insert the branching plug-in at the point in the flow after the step where you want the
branch to occur.

2. Position the step to run, if the condition is met, beneath the branch and the position of
the next steps.

3. Draw connectors between the steps to define the flow.
4. Set the input and output values to define the condition and specify the values.

Chapter 5: Creating a new plug-in

Hitachi Ops Center Automator Service Builder User Guide 99

Creating a conditional branch using the branching plug-ins

The following figure shows an example of using the Branch by Property Value Plug-in to set
up a conditional branch when a step property generated by a previous step equals the
specified value.

Specily & operty Mapping I

Enter tre waiues of e 1Pt pronerTy Tor mappng purpases

Select the outd
output property

from the
previous step
-
Conditorsl Brinch
-] oo E @
pa—
Y
Branch
Condition
(select from
list) - ®
-+ [
Service Values to Specify
compare “test”
property P Select “valueX
to equals valuel”
compare

In this example, "Step A," is run only when "out0" from the previous step equals "test."

The following figure shows an example of using the Branch by ReturnCode Plug-in to set up
a conditional branch when a return code generated by a previous step meets a specified
criteria.

Chapter 5: Creating a new plug-in

Hitachi Ops Center Automator Service Builder User Guide 100

Creating a conditional branch using the branching plug-ins

B won B
— " -‘
0L o =Q > EJ"-
= - |
J
B
Branch . ‘
condition - o Select
(select from '_ . : h “ReturnCode

list) e =valuel”
| Dizpiay i Gl Visbany |
QJ o on Bt cdeTiaue’

Specify “0”
as“valuel"

& &

Valuesto be
compared

In this example, "Step A" is run only when the return code from the previous step equal "0."

To create a more complex conditional branching, you can use multiple Branch by Returncode

plug-ins so that one step is run when a condition is met and another step is run when the
condition is not met.

If the condition of the
first Branch by
— ReturnCode Plug-in

If the return code is 1,
—_ - Step Bruns, and then

Step Cruns.
matches, Step A isrun
and returns 0.
If the condition of the first Branch)
. If the return code is 0,
by ReturnCode Plug-in does not _
—# Step Bisnotrun, and
match, Step A does not run. The Step C
second Branch by ReturnCode P L runs.

Plug-in uses the return value of
the Previous Step.

Conditional Branch 3

=] 100% [[E | B

[54 \(} o— \iBlo
Previous: Branch oy [stepC -
step Retumnco. [
yes
> -
Step B
General property Next Steps @
Enter text to search (—.l ﬂ E»
Sor By Display Mame v
Display Name GUI Visibiliy Value
-ﬁ Condition ReturnCode=valuel
wh] Valuel 1
o} | Valuez 0

Chapter 5: Creating a new plug-in

Hitachi Ops Center Automator Service Builder User Guide 101

Generating an email

Generating an email

During the processing of a service template, you can generate an email with a specified
notification or the contents of some output by using plug-ins.

You can use the Email Notification Plug-in to send an email to specified recipients notifying
them when a specific condition occurs and that includes information that has been output
from a task or process. For example, you can send the result of a LUN path configuration
associated with the Allocate Volume Service to a specified email address. When using this
plug-in, you specify the address for the recipient, a subject line, and the body of the email
which can consist of a predefined message or the output from a previous step. You can also
specify the encoding for the formatting of the email.

Details about the email sender are defined in the SMTP server settings. Before using the
Email Notification Plug-in to send an email, you must specify the correct email details from
the Email settings, accessed through the System Settings, available from the Administration
tab.

To generate an email:

Procedure
1. Insert the Email Notification Plug-in step at the point in the flow after the step that has
the information for the email notification.
2. Draw connectors between the steps to define the flow of execution.

3. Click the Email Notification Plug-in step and enter the values for the input properties
specifying the recipient's address, encoding, and subject.

4. In the Body field of the Email Notification Plug-in, enter the key for the output property in
the plug-in step that is generating the email content.

In some cases, you might want to send output that is not in the default JSON format that
you must first convert before sending the email. To accomplish this, you can use either
one of the following plug-ins:

« JavaScript Plug-in: This plug-in treats JSON input data as an object that can be
converted through a JavaScript script to the required format.

« File Adapter Plug-in: This plug-in fetches values from JSON input.

For more details on how to generate an email notification, see the step-by-step
directions provided in the Example of creating a new plug-in topic.

Chapter 5: Creating a new plug-in

Hitachi Ops Center Automator Service Builder User Guide 102

Chapter 6: Building, debugging and releasing

After specifying the steps and establishing the flow for a new or modified service template,
you must access the Debug tab to generate a build. After a build is successfully completed,
you can use the built-in debugger to run through the steps and correct any problems with the
flow or property mapping. When the service template is functioning properly, you can release
it to the operating environment where a user can use it to create a service.

Debug and release workflow

After creating or modifying a service template, you can build and then debug the service
according to the following phases:

Phase 1 - Preparing

Before building the service template, make sure that the service template details are
specified, that the plug-in steps are arranged in the correct flow order, and that values for the
input and output properties are properly defined.

Phase 2 - Building

1. Start building the service template by clicking on the Debug tab.

2. Observe the information returned by the Build / Release dialog box to see if any errors
are generated.

3. If there are errors, hover the cursor over the error message to see details pertaining to
the error.

4. Make whatever corrections are necessary and continue to rebuild the service template
until it completes building successfully.

Phase 3 - Debugging
1. After a service template has been successfully built, you can perform any necessary
debugging.

2. Correct any errors and continue re-building the service template until all errors are
resolved.

3. Atter all problems have been resolved, conduct a test by adding and executing the
service in the development environment.
Phase 4 - Releasing

1. When the service template is functioning properly and there are no further problems,
you can release the service template. A service template must be in Released status to
submit the service template to the operating environment.

2. Create a service from the released service template.

3. Verify the execution results of the task. If any problems are identified, amend the
affected service template or plug-in and repeat the debug process.

Chapter 6: Building, debugging and releasing

Hitachi Ops Center Automator Service Builder User Guide 103

Building a service template

The following figure shows the typical steps you follow when debugging, testing and releasing
a service template.

Developing
Service Template

Build

If necessary,
correct any ermors.
and rebuild

Debug

Run debugger to
identify and correct
fiow or mapping
problems

Simulate and test
service

Release

Released Service
Template

Building a service template

After a service template is created and is in the Developing status, the next step is to build
and debug the service template and its related plug-ins.

Here are the steps for initiating the building and debugging of a service template:

Before you begin

A service template in the Developing state must exist.

Procedure

1. From the Service Builder Edit window, click the Debug tab.
After confirming your intention to perform the debug, the Build / Release Results dialog
box appears and the service template undergoes the build process. If any errors are
generated, error icons and links are visible and warning icons appear when you have
failed to enter a required property.

2. Make the necessary corrections where indications appear or adjustments to the process
as needed.

3. Repeat the build process until the service template is free of errors.

Chapter 6: Building, debugging and releasing

Hitachi Ops Center Automator Service Builder User Guide 104

Build / Release Result dialog box

Result
After building a service template, the following processes occur:

= Services added from the debug version of the service template are deleted, and tasks run
from the service are archived.

* The debug task run from the debug version of the service template is deleted.
* The debug version of the imported service template is deleted and then re-imported.

After the build process completes successfully, the Perform Debugging dialog box appears
where you can verify the flow of execution and make any adjustments that are necessary
before releasing the service template.

Next steps
= Access the debugger to verify the flow of steps and to make any required modifications.
* Create services and tasks based on the debug configuration of the service template.

For more information on creating services, see the Hitachi Ops Center Automator User
Guide.

* Provided the service template works properly and has passed the build process, proceed
to release the service template.

Build / Release Result dialog box

You initially verify the results when building and releasing a service template from the Build /
Release Result dialog box.

The following table describes the Build / Release Result dialog box fields, subfields, and
field groups. A field group is a collection of fields that are related to a specific action or
configuration.

When you enter information in a dialog box, if the information is not valid, errors that include a
description of the problem appear at the top of the box.

Field Subfield Description
Results Summary | Build / Displays the results of the service template build.
Release
Result
Status Displays the current status for the service template.
Status Details Type Indicates the type of status message.

Message ID | Shows the message ID.

Use the following file format for a plug-in that runs a
script: name-of-plug-in.extension.

Message Shows the content of the status message.

Chapter 6: Building, debugging and releasing

Hitachi Ops Center Automator Service Builder User Guide 105

Running the debugger

After the service template builds successfully, you can start the debugging process from the
Perform Debugging dialog box.

Running the debugger

After successfully building a service template, you can run the built-in debugger by accessing
the Perform Debugging dialog box and then clicking OK. Before accessing the debug
interface, you must specify the details for the debug service and tasks in the Perform
Debugging dialog box. You can also verify and edit the service properties or make changes
from the Create Service or Create Request windows.

You can use the built-in debugger to make sure the plug-ins and flow of a service template
are working as intended. During a debugging session, you can:

= Control when to run steps in the flow of a service template to isolate and correct any
problems.

* Run and manage debug tasks while verifying the flow transitions at all hierarchical levels.

* Confirm that property mapping is set correctly and that the conditions for running
subsequent steps flow as intended.

* Modify input and output properties for currently running tasks.

= Set breakpoints to enable the processing to start from or end before a specified step in the
flow.

= Skip the processing of specified plug-ins (script/command, repeat, wait for user response)
so that it appears to the next step as though the process of the plug-in has run, which
allows the flow to continue according to the condition of the next step.

= Display the results of a repeated-execution flow (for each execution time).
= Consult a running log of running tasks.

= Edit entries in the Create/Edit Service and Submit Service Request windows to
simulate service template processing.

= |f you detect an problem with a plug-in, you can assign an arbitrary property value or
return value to the plug-in and run the plug-in again. This allows you to see how the plug-
in processing and flow transitions are effected when you change a specific property value
or return values.

You can debug a service template multiple times.

When you debug a service template, Ops Center Automator creates a debug service and
debug task.

Debug service

A debug service is a service that is generated and run when you debug a service template.
One debug service is created per service template. When you debug a service template that
has already been through a debug process, Ops Center Automator deletes the existing
debug service and creates a new one. The debug services appear in the Service column in
the Tasks - Debug view, but do not appear in the Services window.

Chapter 6: Building, debugging and releasing

Hitachi Ops Center Automator Service Builder User Guide 106

Running the debugger

Debug task

A debug task is a task generated for a debug service when debugging a service template.
When you debug a service template that has already been through a debug process, Ops
Center Automator deletes the existing debug task and creates a new one. Debug tasks
appear in the service template Debugging view and Tasks - Debug view. Only users assigned
the Admin or Develop role can view and work with debug tasks. Debug tasks do not appear
in the task summary.

5 Note: You cannot edit service template or plug-in definitions from the debugger
view. Instead, when you detect a defect during debugging, you must stop
debugging and return to the Service Builder Edit window to make the required
correction.

Limitations on concurrent debugging procedures and associated tasks

A maximum of one debug service and one debug task can be generated for the same service
template, and the same service template cannot be debugged by multiple users at the same
time. The same service template cannot be edited by multiple users at the same time
(because the last save action for the template takes precedence, which means that multiple
problems cannot be fixed at the same time).

If a debug service and a debug task already exist for a service template that is being
debugged, when you run the build or release process, the debug service and debug task are
deleted automatically, and a new debug service and debug task are created when debugging
re-starts.

After the debug task finishes, if you start debugging again without first closing the Debugger
view, the created debug service and the finished debug task are deleted automatically and a
new debug service and debug task are generated.

Before you begin

A Developing version of the service template to debug must have successfully completed the
build process.

Follow these steps to start a debugging session:

Procedure

1. Enter the details from the Perform Debugging dialog box.

2. For the Service Name field, accept the original name appended with [DEBUG] or
specify another name of your choosing.

3. Verify and, if necessary, modify the details for the other service and task related fields
4. For the Task Log Level, specify the level of details to store in the task log file.

5. If necessary, you can supply the values that are normally specified by the user who is
configuring and submitting the service by accessing the Edit menu and selecting either
From Create Service window or From Create Request window.

6. Click OK to access the debugger user interface.

Result

The debug interface opens where you can begin the debugging process.

Chapter 6: Building, debugging and releasing

Hitachi Ops Center Automator Service Builder User Guide 107

Perform Debugging dialog box

Perform Debugging dialog box

After successfully building a service template, you can specify the details for the debugging
session in the Perform Debugging dialog box.

The following table describes the Perform Debugging dialog box fields, subfields, and field
groups. A field group is a collection of fields that are related to a specific action or

configuration.

When you enter information in a dialog box, if the information is incorrect, errors that include
a description of the problem appear at the top of the box.

Field

Subfield

Description

Service Name: *

Specifies the name assigned to the service
template. The debug version has "[DEBUG]
appended to the name.

Tags: - Specifies the tag groups with which the service
is associated.
Task Name: - Specifies the assigned task name. The debug

version has "[DEBUG] appended to the name.

Task Description:

Gives an optional short description for the task.

Service Group:*

Specifies the service group with which the task
is associated. Because the target device
operated by the debug task affects the
agentless connection-destination definition, you
must specify a service group.

Task Log Level:

Specifies the level of information that is output
to the task log during the debug process.

= Severe

= Information
= Fine

= Finer

= Debug (default)

Properties

The following
details are
provided for the
list of properties:

= Display Name

= Key Name

Edit

Allows you to edit the service from the Modify
and Submit user perspective.

* From Create Service Window

= From Create Request Window

Restore Default

Restores the default values of properties when
building the service template.

Chapter 6: Building, debugging and releasing

Hitachi Ops Center Automator Service Builder User Guide 108

Editing service and request entries while debugging

Field Subfield Description
" Value Import Imports a properties file. This can be useful for
= Description importing a properties file with known settings
from another service template or that was
= Scope

saved at some point for the current service
template that you are debugging.

Export Exports a properties file. This can be useful for
saving the properties for a service template to
a file before making changes, which allows you
to import the original property settings if
necessary at some point during the debugging
process.

Editing service and request entries while debugging

Besides specifying the service and task details for the debugging from the Perform
Debugging dialog box, you can also examine and edit the service properties to supply the
config and submit values from the Create Service or Create Request windows.

The properties section shows a listing of service properties implemented for the service
template. It shows the Display Name, Key Name, Value, Description and Scope.

Before proceeding to the debugger interface, you often must first specify the values that
normally are supplied by the Modify and Submit users when running a service. The following
messages indicate that you must supply values for the specified properties before continuing
with the debugging session:

Information is not complete. Please edit properties from [Create
Service Window]

Information is not complete. Please edit properties from [Create
Request Window]

To edit the properties from either the Create Service or Create Request windows, follow these
steps:

1. From the Properties section of the Perform Debugging dialog box, click Edit.

2. Choose From Create Service Window or From Create Request Window depending
on which interface you want to edit.

3. Click the category of settings (marked in red and with a warning (!) icon) and enter the
missing values for all fields that are marked with a red asterisk (*), until the section turns
blue indicating that all required fields have been filled in. Then click OK.

4. After specifying the service and task details for the debug session, and supplying any of
the required values for the properties, click OK to access the debugger interface where
you can begin debugging the service template.

Chapter 6: Building, debugging and releasing

Hitachi Ops Center Automator Service Builder User Guide 109

Working with the debugger

While editing the service properties, you can also click Import to restore properties from a
previous debugging session or Export to save the properties from the current session. In
some cases, you might want to use this import capability to save time by loading all of the
property values at one time, or possibly to restore property values that you previously
exported. You can also click Restore Default to restore all default values.

Working with the debugger

After successfully building a service template in preparation for its release, and supplying the
required service and task details from the Perform Debugging dialog box, you can use the
Debugger interface to debug the service template.

The Service Builder Debug window has the following operational panes:

= Debugger: This area allows you to control debug processes associated with the currently
selected step.

* Flow: Shows the placement and flow of steps associated with the service template.
* Flow Tree: Shows the hierarchical flow of steps.

* Task Log: Selecting this tab shows a list of task entries. You can update the list to see the
current state of running tasks or download the list to a file for subsequent reference.

= Service Properties: Selecting this tab shows the Display Name of the service properties
associated with the service template along with the assigned Key Name and Value.

* Break Points: Selecting this tab shows any currently set breakpoints along with their Flow
Hierarchy and Display Name: You can remove all currently set breakpoints by clicking
Remove All Break Points.

Debugger

The debugger has a convenient method for controlling how to run tasks for a debug process
using the following options:

Icon Option
a Input Response: Requests an input response for a waiting task.
B (Retry Debug): Tries the debugging again as follows:

* Retry Debug: Tries the debugging process again from the beginning of
the service template.

* Retry the Task Starting from the Failed Step: Tries the task again,
beginning from the last failed step.

* Retry the Task Starting from the Step after the Failed Step: Tries the
task again immediately after the last failed step.

» (Resume Debug Operation): Resumes the debugging from the last failed
step.

Chapter 6: Building, debugging and releasing

Hitachi Ops Center Automator Service Builder User Guide 110

Working with the debugger

Icon Option

1] (Interrupt Debug Operation): Interrupts the debugging at the current task.

B (Forcibly Stop Debug Operation): Forcibly stops the debugging at the
current task.

S (Execution of Step Into): Runs the task to the next interruptible step.

1 (Execution of Step Over): Runs the task to the first interruptible point in the
next step.

4 (Execution of Step Return): Runs the task to the first interruptible point in
the upper hierarchy.

» (Set/Unset Breakpoint): Sets (or removes) a breakpoint that causes the
running tasks to pause after the specified step.

Debug Modes

Note: The system automatically generates a breakpoint when you choose the
step-into, step-over, or step-return option to control how the tasks run during a
debug session.

* Run plugin in execution mode: Runs the plug-in in execution mode.

* Run plugin in dry-run mode: Runs the plug-in in dry-run mode.

Task Status

The status for a debug task can be one of the following:

Icon Status

® Waiting: Indicates that the task is waiting to run.

) Interrupted: Indicates that the task action was interrupted by the step
execution feature.

® In Progress: Indicates that the debug task is in progress.

a8 Waiting for Input: Indicates that the task is waiting for user input.

G In Progress (with Error): Indicates that the task detected a processing error.

® In Progress (Terminating): Indicates that the task received a stop operation
or forcibly stop operation instruction, and is terminating the processing.

~ Completed: Indicates that the task completed successfully.

Chapter 6: Building, debugging and releasing

Hitachi Ops Center Automator Service Builder User Guide 111

Working with the debugger

Icon Status

® Failed: Indicates that the debug task failed.

Conditional Expressions in a Next Step Flow

When using conditional expressions in a next step flow, the line indicating the flow of

execution shows the arrow conditional expression (5 f".) icon indicating its current status:
= Green Icon: TRUE

* Dark Gray Icon: FALSE

* Dark Gray Icon: NOT YET (not yet run)

By mousing over the arrow with the conditional expression icon attached, the arrow condition
name, status, type, and description appear as a tool tip.

Step Information

Step information gives step details as follows:

* |D: Shows the name of the currently selected step.
= Display Name: Shows the display name of the step.

» Status: Shows the status of the debug action for the currently selected step.

Step Properties

The Step Properties view shows the input and output properties associated with a step and
any variables that might be used along with the current values.

The following icons indicate the type of property or variable:

Icon Type
=5 Indicates an Output property
= Indicates an Input property
= Indicates a Variable

You can edit the property values directly by clicking the pencil icon that accesses the Edit
Step Property dialog box where you can make any necessary changes.

While examining the step property values, you can click Edit and select either the From
Create Service window or From Create Request window to specify the values for the
properties normally supplied by the Modify and Submit users.

You can also click Import or Export to save or retrieve property values from a specified file.

Chapter 6: Building, debugging and releasing

Hitachi Ops Center Automator Service Builder User Guide 112

Examining debug details

The Task Log, Service Properties, and Break Point tabs provide additional useful information
about the current debugging session.

Examining debug details
While debugging a service template, you can examine details for tasks that have run, current
service properties, and breakpoints that were set.

During a debug session, you can access details from the following tabs:

Task Log

By clicking the Task Log tab, you can access a list of tasks that were run during the current
debugging session. To update the task list with the latest task activity, click Refresh or you
can click the Refresh Automatically check box so that the task list automatically updated.

To keep a record of the completed tasks for a debug session, click Download and then
specify the location for the log file. You specify the level of detail for a log file when starting
the debugger.

Service Properties

By clicking the Service Properties tab, you can view all of the service properties associated
with the service template. This is useful for verifying the mapping between the input and
output properties and variables associated with a step and the service properties for a service
template. The following fields are provided:

* Display Name: Display name assigned to the service property.
= Key Name: Key name assigned to the service property.

* Value: Value currently assigned to the service property.

Break Points

From the Break Points tab, you can see all of the breakpoints that are set for the current
debugging session. The following details are shown:

* Flow Hierarchy: Shows the hierarchy of flow usually indicated by a backslash (/).
* Display Name: Shows the display name assigned to the step.

You can set a breakpoint to halt the flow at a particular step by selecting the step and then
clicking on the breakpoint icon control.

When you no longer need the currently set breakpoints, remove them by clicking Remove All
Break Points.

Managing tasks during debugging

You can control the execution and flow of tasks during the debugging process.

For more information on the options available from the Debugger view, see the following
topics.

Chapter 6: Building, debugging and releasing

Hitachi Ops Center Automator Service Builder User Guide 113

Controlling the processing flow of debug tasks

Controlling the processing flow of debug tasks

The following describes the general procedure for debugging a service template.

Before you begin

A service template in the Developing state must exist with steps you added to the Flow view.

Procedure

1. If you do not expect any problems when running the plug-ins in the service template, the
first step of the debug process is to run the debug task without pausing between steps.
In the Debugger view or the service template debugging view, make sure that there
are no problems with the flow transitions or the plug-in processing. If the service
template contains plug-ins that you do not want to run at this time, skip this step and
move directly to step 2.

2. If you identify an problem with a flow transition or plug-in processing, run the steps in the
debug task individually to identify the precise location and nature of the problem. You
can also test the behavior of the plug-ins by assigning unexpected values to input and
output properties.

Click Step Into to run the currently selected step.
Click Step Over to run the next step.

Click Step Return to run the step in the upper flow after completing the steps in the
current flow.

To start the debugging process start again from the failed step, click the debug arrow,
and choose Retry the Task Starting from the Failed Step. By trying again from a
failed step, you can resume the debug task with the same task ID and the original
property values. You can use this approach when the cause of the failure is resolved.
For example, you can try a step again that fails because of a temporary problem with
the network when the network connection is available again.

To start the debugging process again from the step after the failed step, click the
debug arrow, and choose Retry the Task Starting from the Step after the Failed
Step. By retrying from the step after the failed step, you can resume the debug task
with the same task ID and the original property values. This approach is best in
situations where there is no must to run the failed step. When you try a task again
from the step after the failed step, the task processing continues as if the failed step
ended normally. You can use this approach when you encounter an problem in a
step, but want to continue running the debug task and handle the problem later.

Handling interruptions of debug tasks

Under specific circumstances, the tasks might be interrupted or ended in unexpected ways
during a debugging session.

The steps in the debug task appear in the Flow view of the service template debugging view
in the order in which they run. The icon of the step indicates the status of the step. You must
be aware of how tasks are affected when the debugging process is interrupted.

Chapter 6: Building, debugging and releasing

Hitachi Ops Center Automator Service Builder User Guide 114

Controlling the display of tasks in the task list

Handling of debug tasks when the Ops Center Automator server stops

If the Ops Center Automator server stops during debugging, the debug task that is running is
forcibly stopped. Therefore, before stopping the Ops Center Automator server, wait for all
debug tasks that are still running (not yet completed) to finish or stop the debug tasks. This is
the same as the handling of tasks generated when normal services are run.

Handling of debug tasks when a failover of the cluster occurs

When a cluster failover (switchover of the system) occurs during debugging, the debug task
is forcibly stopped. This is the same as the handling of tasks generated when normal services
are run.

Handling of debug tasks when the user logs out during debugging

When a user logs out during debugging, a confirmation dialog box appears asking for
confirmation before logging out the user. If you choose to log out, the debug task is forcibly
stopped.

Handling of debug tasks when the browser is closed

When the browser is closed during debugging, the debug task continues running normally. If
the task is running step-by-step, the task remains at the step where it stopped. To stop the
debug task, you must log on again and then stop the debug task from the Debug Task List
view.

Controlling the display of tasks in the task list

While debugging tasks, you can specify how the list of tasks are managed in the Task List.

You can specify the period of time to retain tasks before they are archived and no longer
shown in the Task List. After tasks are archived (and become history entries), the detailed
information about the tasks is deleted, and you can no longer view it in the Tasks List view
again.

You can archive tasks automatically by specifying a value in one of the following properties:

Property key Description Range

tasklist.autoarchive | Specifies the period, expressed in days, | 1-90
.taskRemainingPeriod | to retain completed tasks in the task list.
When the specified period has passed,
the tasks are automatically archived.
The automatic archiving of tasks takes
place one time a day according to the
time specified through the
tasklist.autoarchive.executeTi
me property.

Default: 7

tasklist.debugger.au | Specifies the period, expressed in days, | 1-90
todelete. taskRemaini | before debug tasks are automatically .

. Default: 7
ngPeriod deleted.

Chapter 6: Building, debugging and releasing

Hitachi Ops Center Automator Service Builder User Guide 115

Verifying the property mapping of a plug-in

Property key

Description

Range

tasklist.autoarchive
.maxTasks

Specifies the maximum combined
number of tasks and debug tasks to
retain in the Tasks List. When the
maximum number of tasks in the Tasks
List is exceeded, the excess tasks are
automatically archived, starting from
those with the oldest end date and time.
The archived tasks are managed as
history entries. Debug tasks are deleted
automatically and are not retained in
history. Automatic archiving and
automatic deletion take place one time a
day at the time specified by the
tasklist.autoarchive.executeTi
me property.

When there are more tasks than the
specified value, trying to run a new
service results in a "maximum
exceeded" error, and no task is
generated. Periodic tasks that were run
previously are not subject to this limit
and can generate new tasks. Therefore,
to allow new services to run, you must
estimate the number of executions that
take place per day to specify the
tasklist.autoarchive.taskRemainingPe
riod property.

100 - 5000
Default: 5000

Verifying the property mapping of a plug-in

When debugging a service template, you can control the flow of running the tasks. The
following describes the general procedure for verifying the property mapping of a plug-in.

Before you begin

A service template in the Developing state must exist with steps you added to the Flow view.

Procedure

1. In the Flow view, select the step whose plug-in property values you want to verify. The
Debugger view appears the input properties and output properties of the step you

selected.

2. Click the Service Properties tab at the bottom of the service template debugging view.
The values of the service properties are displayed.

Chapter 6: Building, debugging and releasing

Hitachi Ops Center Automator Service Builder User Guide

116

3.

Edit Step Property dialog box

In the Debugger view, review the contents of the Step Properties for the plug-in
property you want to verify, and identify the service property to which it is mapped.

In the Key Name column of the Service Properties tab, find the service property you
identified in step 3.

In the Debugger view and the Service Properties view, make sure that the same value
appears in the Value columns for the plug-in property and the mapped service property.
If a service property is not mapped to the intended plug-in property or the values of the
plug-in property and the service property differ, fix the problem in the service template
editing view by clicking on the pencil icon and then supplying the correct value through
the Edit Step Property dialog box. You can also change the values of the plug-in
properties. By doing so, you can test the plug-in processing when property mapping is
configured correctly to see how the processing of subsequent steps and the flow
transitions change with an assortment of values.

Edit Step Property dialog box

During the debugging process, you can edit a step property if necessary.

The following table describes the Edit Step Property dialog box fields, subfields, and field
groups. A field group is a collection of fields that are related to a specific action or
configuration.

When you enter information in a dialog box, if the information is not valid, errors that include a
description of the problem appear at the top of the box.

Field Subfield Description
Name: - Shows the property name.
Display Name: - Shows the display name for the property.
Description: - Shows a description for the property.
Multiline: Yes/No Indicates whether multiline value is required for the
property.
Value * - Shows the current value for the property.

Importing property values

While debugging a service template, you can import property values to a specified properties

file.

Follow these steps to import property values to a specified file.

Procedure

1.

From the debugger interface, click Import.

Chapter 6: Building, debugging and releasing

Hitachi Ops Center Automator Service Builder User Guide 117

Exporting property values

2. Inthe Import dialog box, enter the name of the properties file to use for storing the
property values, or use the browser to search for the specified file, then click OK.

When the import finishes, notifications about the property values that have and have not
been imported are temporarily visible as follows:

=« Properties to which the values are applied.

« Properties for which the values are not applied. These are properties for which the
attribute values cannot be changed and for which the values are not applied due to
the property value definitions.

« Non-existent properties. These are properties that are defined in the file but do not
exist in the target service.

When importing a properties file from the debugger, (or the Create/Edit Service and
Submit Service Request windows), the JSON or key=value format is supported.

When accessing the import capability from the CLI, the additional format key@FILE=file-
path is also supported.

The conditions that must be met to apply property values during an import are shown in
following table.

Property
Group
Attribute Property Attribute
hidden paramMode visibility reference hidden readOnly
False in config false false false
False in exec false -- --

If the properties do not meet these conditions, or there are no corresponding properties
defined in the service, the values contained in the definition file are not applied. The
values are also not applied if the "value field" is not defined or is set to null.

Note: If the length of keyName exceeds the limit, the property is classified
as a property that does not exist in the service.

If an error occurs during an import, the error dialog box appears, and the import is
canceled, leaving all property values unchanged. An error occurs when the specified file
does not exist or the properties file definitions are not valid.

Exporting property values

While debugging, you can export property values to a properties file. This allows you to save
multiple property values in a file for subsequent reference.

Exporting property values

Follow these steps to export property values to a specified file.

Chapter 6: Building, debugging and releasing

Hitachi Ops Center Automator Service Builder User Guide 118

Exporting property values

1. From the debugger interface, click Export.

2. Access the browser to locate the properties file or specifically enter its name, then click
OK.

The property values are exported to the specified file. The property values are exported in the
Json format and, by default, are saved to the service properties.json file.
Format

In the properties file specified as a command argument, the property key and value used by
the executed services can be defined in JSON, key=value, and key@FILE=file-path formats.

JSON format

{

"properties": [
{

"keyName": "property-key",
"displayName" : "property-display-name"
"description" : "description-of-property"
"type" : "property-type"

"value": "property-value"

br
{

"keyName": "property-key",
"displayName" : "property-display-name"
"description" : "description-of-property"
"type" : "property-type"

"value": "property-value"

}l

Following are definition details for the JSON format:
* The displayName, description, and type fields are optional.
* When you specify the value field, set an empty value for the property value.

* The value for the password type property can be in plain text or encrypted. The "value"
field of the password type property is not exported for security reasons. The defined value
is imported as is, and the REST API determines whether it is in plain text or encrypted.

* In the definition file, define only properties for which you want to set values. The values of
properties that are not defined in the imported file remain unchanged. When exporting
step properties, the type field is only output for the service component.

key=value format:

To specify property values for a key=value properties file, use the following format:

property-key=property-value [line break]

Chapter 6: Building, debugging and releasing

Hitachi Ops Center Automator Service Builder User Guide 119

Exporting property values

Following are definition details of the key=value format:

Specify a property name and a property value on each line.

Lines starting with a hash mark (#) are handled as comment lines.

Lines that do not contain an equal mark "=" are handled as comment lines.

A line break needs to be added at the end of each property setting line.

Do not add line breaks in the middle of the property name and property value lines.
Characters are case-sensitive.

Even when a "\" is contained in strings like service and plug-in resource files, you do not
must type "\\".

"\" is handled as a "\".

The characters at the beginning of a line up to the first equal sign (=) are treated as a
property name. Do not trim lines before and after the property setting line.

The characters after the equal sign (=) after the property name, until the end of the line
are treated as the property value. Do not trim lines before and after the property setting
line.

The end-of-line character at the end of the properties file (EOF) is optional.
Empty lines (lines containing line breaks only) are ignored.
Both CR+LF and LF can be used as line breaks.

When using the property-key = [line break] format, set an empty value for the
property value.

key@FILE=file-path format

In this format, the property key is stored in the properties file, and the property value is stored
in the property value file and referenced separately. Note that this format can be used
together with the key=value format in the properties file:

property-key@FILE=absolute-path-of-the-property-value-file or relative-path-from-the-

property-file [line break]

The definitions in the key@FILE=file-path format are the same as the key=value format. The
differences from the key=value format are as follows:

The absolute path of the property value file or the relative path from the properties file
must always be specified or an error occurs.

If the specified file does not contain a property value, an error occurs.

The property value file can contain end-of-line characters. However, if a property value file
that contains an end-of-line character is specified for a property for which end-of-line
characters must not be set, an error occurs.

Chapter 6: Building, debugging and releasing

Hitachi Ops Center Automator Service Builder User Guide 120

Releasing a service template

Releasing a service template

The final step to complete a service template is the release process. The release action
changes the configuration type of a service template and the related plug-ins to Released.
You can create new services and tasks from a service template in Released status.

In Released status, the service template appears in Ops Center Automator as an available
service template from which you can create services.

The released service template can also be placed in the flow as a service component during
the development of the service template.

Return codes of the step using a service component are as follows.

0
The step in the service component ended normally.

1
The step in the service component ended with a warning. There is no step that ended
abnormally.

2

The step in the service component ended abnormally.

S g
E Note: You can release a template one time only.

Before you begin

A service template in the Developing state that has completed the build process with no
errors and performs as designed.

Procedure

1. From the Service Builder Edit window, click Release.
The service template undergoes the release process and the configuration type
changes to Released status.

Result

After the release process completes successfully, the service template is available in the
Services tab with the Released configuration type.

* The service template is removed from the Developing state and appears under the
Released tab when viewing available service templates.

* Any services created while the template was in Developing status are deleted.

= Any tasks run from the template while in Developing status are archived.

* The service template appears in the Service Template list when creating a new service.
* The related plug-ins appear in the Released tab of the Component view.

* |f specified in the service definitions, a service component is created and located under
the Service tab of the Component view.

Chapter 6: Building, debugging and releasing

Hitachi Ops Center Automator Service Builder User Guide 121

Releasing a service template

Next steps

Create a new service using the released service template in the Ops Center Automator user
interface.

For more information on creating services, see the Hitachi Ops Center Automator User
Guide.

Chapter 6: Building, debugging and releasing

Hitachi Ops Center Automator Service Builder User Guide 122

Chapter 7: Advanced options

This module covers the other functions available in managing service templates and plug-ins.

Editing the service template attributes

You can view and customize the details associated with a service template and specify the
custom files that affect how it is presented and scheduled from the Edit Service Template
Attributes dialog box.

Before you begin

Verify that the service template is in the Released or Developing state.

Procedure

1. From the Service Builder Edit window General tab, click Edit.
The Edit Service Template Attributes dialog box opens.

2. Enter the information for the service template, then click OK.

Result

The changes you made are visible in the updated service template.

Next steps

Continue editing the service template by selecting plug-ins from the list, providing the input
and output step properties, and establishing the flow.

Edit Service Template Attributes dialog box

When editing or creating a service template, you can view and specify additional details for
the service template.

The following table describes the dialog box fields, subfields, and field groups from the Edit
Service Template Attributes dialog box. A field group is a collection of fields that are related to
a specific action or configuration.

When you enter information in a dialog box, if the information is not valid, errors that include a
description of the problem appear at the top of the box.

Chapter 7: Advanced options

Hitachi Ops Center Automator Service Builder User Guide 123

Edit Service Template Attributes dialog box

Field Subfield Description
Key Name - The key name for the service template.
Version - The version of the service template.
Vendor ID - The vendor ID of the service template.

Display Name*

The name of the service template that is visible
to the user.

Vendor Name

The vendor name of the service template.

Description - The description of the service template.

Tags - Tags associated with the service template.
Advanced Icon An image file (48 pixels x 48 pixels) using PNG
Options format. A default image is provided but you can

change the icon by clicking Change. You can
return to the default icon by clicking Restore
Default Icon.

Custom File/Custom
File package

The custom files give information that is visible
for the Service Details dialog box and the
overview associated with the service. Click
Browse to upload a file in .html, js, .css, .swf,
or .jpeg format. If for some reason, you want to
delete the custom file associated with template,
click Delete.

Service Details File
Name

Specifies the name of the file that gives the
information for the Service Details dialog box.

Service Overview File
Name

Specifies the name of the file that contains the
information for the overview associated with the
service template that is presented to the user.

Available Scheduling
Options:

The schedule for executing the task can be:
Immediate, Schedule, or Recurrence.

Available Action:

You can choose to allow the user to Forcibly
Stop the execution of a service when the
processing a step hangs for some reason or
allow the user to Retry the processing of the
service template from a failed step, or from the
point just after the last failed step.

Fields with an asterisk (*) are required.

Chapter 7: Advanced options

Hitachi Ops Center Automator Service Builder User Guide

124

Creating property groups

Creating property groups

You can create property groups to categorize the properties associated with a service
template.

You can assign the input and output properties of a service template to a custom property
group. If no property group is required, the system uses the default reserved.defaultGroup. If
you create a property group, the input and output properties are shown according to the
custom property group name to which they are assigned.

Before you begin

A service template in Developing status must exist.

Procedure

1. From the Service Builder Edit window Edit Property tab, go to the Add menu and
choose Property Group.
The Create Property Group dialog box appears where you can enter the details for the
new property group.

2. Enter the details for the property group and then click OK.
The newly added group is visible in the property list.

3. When creating properties or variables, you can add them to the new group. You can also
select and moving existing properties from the property list to the associated group.

Create Property Group dialog box

You can create a new property group for a service template from the Create Property Group
dialog box.

The following table describes the Create Property Group dialog box fields, subfields, and
field groups. A field group is a collection of fields that are related to a specific action or
configuration.

When you enter information in a dialog box, if the information is not valid, errors that include a
description of the problem appear at the top of the box.

Field Subfield Description
ID* - Specifies the ID for the new property group.
Display Name* - Name of the new property group shown through the

user interface.

Description: - A optional description for the new property group.
Display/Hide: - Specifies whether to display or hide the property group.
Custom File - Specifies a custom file for the property group.

package:

Chapter 7: Advanced options

Hitachi Ops Center Automator Service Builder User Guide 125

Create Property Group dialog box

Field Subfield Description
Summary Panel - Define a JavaScript function for display contents of
Rendering summary panel.

The following is a sample:

function summarize (properties, language,
displayType) {
// PropertyInformation objects are stored in the

properties.

var summaryContentsMap = {};

var restriction;

for (var 1 = 0; 1 < properties.length; i++) {
restriction =
JSON.parse (properties[i].restriction);
if (displayType == "exec") {

if (restriction.permission != "hidden") {

summaryContentsMap [properties[i] .displayName] =
properties[i].value;
}

} else {
summaryContentsMap [properties[i] .displayName] =

properties[i].value;

}

return summaryContentsMap;

Validation Script: - Generates a validation file for the property group.

Fields with an asterisk (*) are required.

Creating a validator script for verifying property group entries

If the provided validation options are not adequate for your purposes, you can create a script
to perform the necessary verification. Following is an example of a validator script written in
JavaScript that verifies whether a value entered by the user is a number and is less than the
maximum allowable value of 2048:

function (properties, lang, displayType) {
var message = [];

var hasError = false;

if (displayType == "exec") {

Chapter 7: Advanced options

Hitachi Ops Center Automator Service Builder User Guide 126

Create Property Group dialog box

__.each (properties, function (property) {
if (isNaN(property.value)) {
message.push("value must be a number:" + property.keyName + "=" +
property.value) ;
hasError = true;

}

if (property.value >= 2048) {
message.push ("value must be less than 2048:" + property.keyName +
"=" + property.value);

hasError = true;

if (hasError) {
return message;
} else {

return

The following table shows the validator script specifications for the input property:

Name Description
1 Script format function (arg1, arg2, arg3) {
llcode
}
2 Arguments of validator | arg1:

A listing of property values in Property Group. Each
element is an object that has the following properties:

= keyName: The name of the property in string
format.

= value: The value of the property in string format.
argz2:

Locale string. e.g., ja, en

arg3:

Operating information when script is running
(Operation with task creation: exec, Editing operation
of properties: config)

3 Return value of validator | Success:

Chapter 7: Advanced options

Hitachi Ops Center Automator Service Builder User Guide 127

Edit Property Group dialog box

Name Description

undefined or null

Failure:

Error message in array or string format

If the value is not a number or is larger than the specified maximum, then a message is
output through the user interface.

Edit Property Group dialog box

You can edit an existing property group for a service template from the Edit Property Group
dialog box

The following table describes the Edit Property Group dialog box fields, subfields, and field
groups. A field group is a collection of fields that are related to a specific action or
configuration.

When you enter information in a dialog box, if the information is noit valid, errors that include
a description of the problem appear at the top of the box.

Field Subfield Description
ID: - Specifies the ID for the property group.
Display Name: - Name of the property group visible through the Ul.
Description: - A optional description for the property group.
Display/Hide: - Specifies whether the property group is visible or

hidden.

Custom Files - Specifies a custom files for the property group.
package:
Summary Panel |- Defines a JavaScript function for display contents of
Rendering summary panel.
Script:
Validation Script: | - Specifies a validation file for the property group.
Fields with an asterisk (*) are required.

Managing versions

Service Builder applies the same method of managing versions to both service templates and
plug-ins. The system assigns a version number when you create a new service template or

plug-in.

Chapter 7: Advanced options

Hitachi Ops Center Automator Service Builder User Guide 128

Component Version Management dialog box

All service templates and plug-ins need a version number in nn.nn.nn format (major-version-
number.minor-version-number.revision-number). Specify each of the numbers in the range
from 00 through 99.

When you copy a service template or plug-in with the same Key Name and Vendor ID, you
must assign the copy a new version number. You cannot duplicate a service template or plug-
in with the same Plug-in key name, Vendor ID, and Version Number.

If two or more service templates with same service template key name and Vendor ID exist,
only the latest version of service template is visible. Similarly, if two or more plug-ins with
same Plug-in key name and Vendor ID exist, only the latest version is visible.

Under some conditions, when plug-ins are updated, a service template can include older
versions that you must update to the most recent versions. In this case, you can update
individual plug-ins or all the plug-ins for a service template by following these steps:

1. From the Service Builder Edit window, go to the Actions menu and select Component
Version Management. The Component Version Management dialog box appears.

2. To update all of the plug-ins associated with the current service template to the latest
versions, select the All Apply tab. You can see all of the plug-in component steps that
will be upgraded by clicking Step list to be applied. If you prefer to individually specify
each of the plug-in components that to update, select the Individual Apply tab and then
select the version to apply for a step.

3. After selecting the components to update, click Apply and a message confirms that the
version was updated.

4. When you finish updating versions, click Close.
5. After updating a plug-in version, save the plug-in to apply the changes you made.

Note: Before updating the service, ensure that the service template and all
associated tasks are in the Released state and that the service is archived or
deleted.

Component Version Management dialog box

You can manage versions of the component steps associated with a service template to
ensure that you are using the most current version of a component. You have a choice of
updating all of the components, or you can select specific components.

The following table describes the Component Version Management dialog box fields,
subfields, and field groups. A field group is a collection of fields that are related to a specific
action or configuration.

When you enter information in a dialog box, if the information is not valid, errors that include a
description of the problem appear at the top of the box.

Field Subfield Description

Apply to All - Collectively updates all step components to the latest
version.

Chapter 7: Advanced options

Hitachi Ops Center Automator Service Builder User Guide 129

Component Version Management dialog box

Field Subfield Description

Individual apply - Selectively specifies specific step components that are
updated to the latest version. When choosing this
option, a list of components is shown along with details
associated with the component and a step list where
you can choose the components to be updated from
the Versions menu. To see more details for the
component, click More and to see all of the properties
associated with the component, click List.

Step list to be - Shows the step list that includes the Step Name,
applied Current Component Name, Latest Version, Latest
Component Name, and Status. Information for the
component to be applied is shown in the lower portion
of the dialog box. You can also click More to see more
details for the specified component or click List to see
all of the properties associated with the component.

Chapter 7: Advanced options

Hitachi Ops Center Automator Service Builder User Guide 130

Appendix A: Reference information

This module describes the built-in service templates and plug-ins, reserved properties, and
locale settings for plug-ins.

List of built-in service templates

A collection of preconfigured service templates is provided with Service Builder.

The following service templates are provided by default and are available for submitting
services with no additional configuration:

Add Host to Cluster in vCenter
Allocates existing volumes used as datastores by ESX cluster hosts to a new ESX
host.

Allocate Fabric Aware Volumes and Create Datastore for ESX Cluster
Allocates volumes to VMware ESX cluster hosts, configures zoning, and creates a
VMware datastore under a datastore cluster.

Allocate Fabric Aware Volumes with Configuration Manager
Allocates sets of volumes from the associated infrastructure group through Ops Center
API Configuration Manager for use by servers running a generic application. This
service accesses the switch management server and acquires existing fabric
configuration and zoning information when allocating new volumes to the host.

Allocate Like Volumes with Configuration Manager
Allocate new volumes to the host to which the specified source volume is allocated
with the same LUN path.

Allocate Volumes, Fabric, and Datastore for ESXi Host
Intelligently allocates volumes to the VMware vSphere server (ESXi host), configures
zoning, and creates VMware datastores using Ops Center API Configuration Manager.

Allocate Volumes from Virtual Storage Machine
Allocates new volumes from a Virtual Storage Machine and reserves the same LDEV
IDs on other storage systems for data migration.

Allocate Volumes with Clone/Snapshot
Allocates sets of volumes with in-system replication (Thin Image, Shadowlmage) from
the associated infrastructure group through Ops Center API Configuration Manager to
be consumed by servers running a generic application.

Appendix A: Reference information

Hitachi Ops Center Automator Service Builder User Guide 131

List of built-in service templates

Allocate Volumes with Configuration Manager
Allocates sets of volumes from the associated infrastructure group through Ops Center
API Configuration Manager for use by servers running a generic application.

Allocate Volumes with 2DC Remote Replication
Intelligently allocates by using sets of volumes from the associated infrastructure
group for use by servers running a generic application and creates a new copy
topology for remote replication.

Allocate Volumes with Remote Replication (Global-Active Device)
Allocates sets of volumes with in-system replication (global-active device) from the
associated infrastructure group through Ops Center API Configuration Manager to be
consumed by servers running a generic application.

Allocate Volumes with Smart Provisioning
Intelligently allocates by using sets of volumes from the associated infrastructure
group through Ops Center API Configuration Manager for use by servers running a
generic application.

Call ServiceNow Table API
Calls the ServiceNow Table API.

Clean up Online Migration Pair
Enables you to clean up the resources created by the Create Online Migration Pair
task.

Configure CIFS/NFS for Hitachi
Intelligent provisioning service to create an EVS, a file system, and a share (CIFS
share, NFS export, or both) for Hitachi. It can create a new EVS with an individual
security context, or use an existing EVS with either a global or an individual security
context.

Create High Availability Pair for Migration
Creates a High Availability pair from a Virtual Storage Machine between two storage
systems for data migration.

Create Online Migration Pair
Runs from the creation of zones to the creation of copy pairs for online host migration
through Configuration Manager. After this service is complete, you must submit the
Migrate Data for Online Migration Pair service to complete the migration.

Create Online Migration Pairs for Multiple Hosts
Automatically submits a Create Online Migration Pair service task for each specified
host. After the auto-submitted tasks are complete, you must submit the Migrate Data
for Online Migration Pair service for each task to complete the migration.

Create ServiceNow Incident Ticket
Creates a ServiceNow incident ticket.

Expand Volume Capacity
Expands existing volume capacity.

Appendix A: Reference information

Hitachi Ops Center Automator Service Builder User Guide 132

List of built-in service templates

Export Virtual Storage Machine Configuration Across Sites
Gives a report showing configuration details of the Virtual Storage Machine across
sites, including information regarding the High Availability pair for Data Mobility
Services.

Global-Active Device Setup
Creates virtual storage machines, assigns Quorum Disk IDs, creates remote paths,
and allocates command devices to create global-active devices.

Get 10 Control
Gets the 10 control information.

Migrate Data for Online Migration Pair
Runs from the swap of copy pairs to the deletion of source volumes for online host
migration through Configuration Manager. Before submitting this service, the Create
Online Migration Pair service must be completed.

Migrate Data Using High Availability Pair
Enables online data migration using a High Availability pair between two storage
systems from a Virtual Storage Machine.

Online Migration
Enables you to migrate a host in an online state through Ops Center Protector, access
the switch management server to obtain existing fabric configuration and zoning
information when allocating new volumes to the host, and then update the zoning
information.

Remove Host from Cluster in vCenter
Unmounts VMFS datastores, unallocates volumes from the specified ESX host, and
deletes zoning.

Set 10 Control
Sets the 10 control for the WWN/iSCSI name and the volume having LUN paths.

Remove 10 Control
Removes the IO control setting from the WWN/iSCSI name and volume.

Retrieve ServiceNow Incident Tickets
Retrieves ServiceNow incident tickets.

Smart Allocation for Oracle Databases
Allocates a set of volumes on a storage system, and adds the volumes to the disk
group for Oracle ASM for Linux.

Update ServiceNow Incident Ticket
Updates a ServiceNow incident ticket.

Note: The File type properties for these service templates include connection
details for various components and should not be changed as the templates
might no longer function properly.

Appendix A: Reference information

Hitachi Ops Center Automator Service Builder User Guide 133

List of built-in plug-ins

Warning: Some properties associated with the built-in service templates include
internal data as indicated by "Do not change." Do not change these properties.

List of built-in plug-ins

A collection of plug-ins are provided with Ops Center Automator that you can use to create
customized service templates.

5 Note: Use only the plug-ins that are listed in this section.

The following plug-ins are included by default:

Abnormal-End Plug-in
Manages abnormal termination of flows, tasks, hierarchical flows, and repeatedly run
flows.

Branch by Property Value Plug-in
Creates a conditional branch that compares and determines service property values to
branch the flow of processing.

Branch by ReturnCode Plug-in
Creates a conditional branch that compares and determines the return value of the
previous step to branch the flow of processing.

Email Notification Plug-in
Connects to an SMTP server and sends emails to the specified destination.

File Export Plug-in
Exports the input content to the specified output file in a format you can define by
using VTL (Velocify Template Language).

File-Transfer Plug-in
Sends a file or a folder to a remote host, or receives a file or a folder from a remote
host. FTP and SCP are used as the transfer protocol.

Flow Plug-in
Creates a flow that has a hierarchy defined by nested flows.

General Command Plug-in
Runs a command line on a remote destination host.

Interval Plug-in
Controls the interval between steps by specifying the wait time.

JavaScript Plug-in
Runs any script written in JavaScript.

Appendix A: Reference information

Hitachi Ops Center Automator Service Builder User Guide 134

List of reserved properties

JavaScript Plug-in for Configuration Manager REST API
Runs any script written in JavaScript and also includes built-in methods for accessing
the Configuration Manager REST API. You can easily write a script to access the
Configuration Manager REST API by using this plug-in.

Python Plug-in
Runs Python scripts on the Ops Center Automator host.

Repeated Execution Plug-in
Runs a specific flow repeatedly. You can use this plug-in to implement loop
processing.

Standard Output Plug-in
Outputs a specified value to the standard output. Do not use this plug-in for a new
service template because this plug-in is a compatibility plug-in with the service
template that was created with the former procedure.

Terminal Command Plug-in
Runs a command line on the remote destination host that is connected with Telnet or
SSH using the Terminal Connect Plug-in.

Terminal Connect Plug-in
Enables terminal connections with the remote destination hosts using Telnet or SSH
authentication.

Terminal Disconnect Plug-in
Disconnects the terminal from the remote destination host, which was connected with
Telnet or SSH using the Terminal Connect Plug-in.

Test Value Plug-in
Compares service property values and returns 0 if the values match the specified
conditions.

User-Response Wait Plug-in
Suspends processing and waits for a user response. Using this plug-in, the operator
manually selects whether to continue processing.

Web Client Plug-in
Sends HTTP request messages such as GET/POST and receives HTTP response
messages. When requested, it accesses the server through a proxy to complete
server and proxy authentication. For example, you can use this plug-in when
connecting to the Web using the REST API.

List of reserved properties

A reserved property is a special service property whose property key has a specific definition
or purpose in Ops Center Automator.

Appendix A: Reference information

Hitachi Ops Center Automator Service Builder User Guide 135

List of reserved properties

The property key of a reserved property begins with reserved. You can use reserved
properties by mapping them to plug-in properties in the Specify Component Input Property
Mapping Parameters dialog box or the Specify Component Output Property Mapping
Parameters dialog box. Users cannot define or assign values to reserved properties.

When you map a reserved property to an input property, the value of the reserved property is
assigned to a plug-in property when the plug-in is run. Alternatively, select the Direct Input
option, and in the Value field, specify the reserved property in the format ?dna_reserved-
property-key?. In this case, the value of the reserved property supplies part of the value of
the plug-in properties at plug-in execution.

When you use a reserved property as an output property, the reserved property stores the
value of a designated plug-in property. By selecting the View Property option in the Specify
Component Output Property Mapping Parameters dialog box, you can specify a reserved
property to which the value of the output property is passed.

Following is a list of reserved properties:

Reserved Property Key Description

reserved.debugger.exitCode Stores the return codes for steps run while in
debugging mode. This property can only be used in
the debugger window.

reserved.external.hcmds.dir Indicates the folder of Hitachi Command Suite.
Example:

C:\Program Files\HiCommand

reserved.external.path Indicates the path of the REST API to access the
dynamic data. For example, in the case of "http://
localhost:22015/Automation/v1/objects/
ExternalResources/IPAddresses?
host=myHost&type=vm", the value becomes "/
IPAddresses". The query parameter is not included.

reserved.external.query Indicates the query parameter of the path passing to
REST API. For example, in the case of "http://
localhost:22015/Automation/v1/objects/
ExternalResources/IPAddresses?
host=myHost&type=vm", the value becomes
"host=myHost&type=vm".

reserved.external.resource.dir Indicates the resource folder of the external resource
of the dynamic data.

reserved.external.userName The user name who is logged in to Ops Center
Automator from REST API.

reserved.loop.index References a numerical value from 1 to 99 that
indicates how many times a Repeated Execution
Plugin, that is one (or N) levels above the base step,
has repeated.

reserved.loop.indexN

Appendix A: Reference information

Hitachi Ops Center Automator Service Builder User Guide 136

List of reserved properties

Reserved Property Key

Description

reserved.loop.input

reserved.loop.inputN

References the value of the inputProperties input
property of a repeated execution plug-in that is one (or
N) levels above the base step. Of the comma-
delimited values specified in the input properties of the
repeated execution plug-in, this property stores the
value of the element that corresponds to the current
iteration of the flow. For example, if the input property
is A,B,C, the values A, B, and C are input in the order
corresponding to the repetition count of the flow. The
repeated execution plug-in can be run a maximum of
99 times.

reserved.loop.output

Passes values to the outputProperties output property
of a repeated execution plug-in. The values output to
this property are assigned to the output property as a
comma-separated value. For example, if the values of
the output property of the plug-in are X, Y, and Z for
successive iterations, the value X,Y,Z is assigned to
the output property.

reserved.service.name

References the name of the service from which a task
was generated. To reference this reserved property,
specify the property key in the format ?
dna_reserved.service.name?. You can use this
property in any plug-in to which service properties can
be mapped.

reserved.service.serviceGroupNa
me

References the service group in which the service
from which a task was generated is registered. To
reference this reserved property, specify the property
key in the format ?
dna_reserved.service.serviceGroupName?. You can
use this property in any plug-in to which service
properties can be mapped.

reserved.step.path

References the ID of the step that is currently being
run. To reference this reserved property, specify the
property key in the format ?dna_reserved.step.path?.
The value of this property is the same as the step ID
visible in the messages output to the task log when
plug-in execution begins and ends. You can use this
property in any plug-in to which service properties can
be mapped.

Appendix A: Reference information

Hitachi Ops Center Automator Service Builder User Guide 137

List of reserved properties

Reserved Property Key Description

reserved.step.prevReturnCode Supplies the return value of the preceding step (the
step that is the origin of the relational line connected to
the plug-in). To reference this reserved property,
specify the property key in the format ?
dna_reserved.step.prevReturnCode?. If there are
multiple preceding steps, the property is assigned the
logical sum of all the return values. If there is no
preceding step, 0 is assigned. You can use this
property in any plug-in to which service properties can
be mapped. If you try a task again from a step that
references this reserved property without executing
the preceding step, the return value from the last time
the preceding step was run is set in this reserved
property as the return value of the preceding step.

reserved.task.description Supplies the description of a task. To reference this
reserved property, specify the property key in the
format ?dna_reserved.task.description?. You can use
this property in any plug-in to which service properties
can be mapped.

reserved.task.dir Supplies the path of the temporary data folder created
during task execution. This property shows a unique
folder path at execution of each task. The folder
referenced by this property is created on the Ops
Center Automator server when the task is run, and
deleted when the task is archived. Note that files and
folders that start with task are reserved in Ops Center
Automator, and cannot be created by the user.

reserved.task.id Supplies the task ID. To reference this reserved
property, specify the property key in the format ?
dna_reserved.task.id?. You can use this property in
any plug-in to which service properties can be
mapped.

reserved.task.name Supplies the task name. To reference this reserved
property, specify the property key in the format ?
dna_reserved.task.name?. You can use this property
in any plug-in to which service properties can be
mapped.

Appendix A: Reference information

Hitachi Ops Center Automator Service Builder User Guide 138

Locale settings for plug-ins

Reserved Property Key

Description

reserved.task.submitter

Supplies the user ID of the user who submitted the
task for execution. If the task was retried, this property
references the user ID of the user who submitted the
task, not the user who retried the task. To reference
this reserved property, specify the property key in the
format ?dna_reserved.task.submitter?. You can use
this property in any plug-in to which service properties
can be mapped.

reserved.task.tags

A reserved property to reference the tags set for a
task.

reserved.task.url

Supplies the URL for accessing the Task Details
dialog box. To reference this reserved property, specify
the property key in the format ?dna_reserved.task.url?.
You can use this property in any plug-in to which
service properties can be mapped.

reserved.terminal.account

References the user ID used by a terminal connect
plug-in. This property is used by the commandLine
input property of a terminal command plug-in. It stores
the login name of the user account used to connect to
the terminal.

reserved.terminal.password

References the password used by a terminal connect
plug-in. This property is used by the commandLine
input property of a terminal command plug-in. It stores
the password of the user account used to connect to
the terminal.

reserved.terminal.suPassword

References the administrator password used by the
terminal connect plug-in. This property is used by the
commandLine input property of a terminal command
plug-in. It stores the password of the superuser used
to connect to the terminal.

Locale settings for plug-ins

The locale setting that applies to a device on which an action is run by a plug-in depends on
the OS. The following describes the locale settings applied when plug-ins are run in each OS.

Appendix A: Reference information

Hitachi Ops Center Automator Service Builder User Guide 139

Locale settings for plug-ins

In Windows

When a script or command is run on a target device, the locale and character set of the target
device should match those of Ops Center Automator. The locale and character set are
determined by the settings in the Region and Language area of the Windows Control Panel
that govern date and time formats, user-level display languages, system-level display
languages, and system locale settings.

In Linux OS

The locale setting applied while the plug-in runs depends on the Character Set Auto
Judgment setting in the Create Custom Plug-in dialog box or the Edit Custom Plug-in dialog
box.

* If the check box is disabled, scripts are run with the LC ALL=C locale. Make sure that
commands and command parameters consist only of ASCII characters. If a command
parameter, standard output, or standard error output contains non-ASCII characters, the
characters might become garbled and prevent the command from running normally.

= |f the check box is enabled, the script is run using the default locale of the connecting
user. When running a script or command on an operation target device, the environment
variable LC_ALL and LANG are set to the default locale of the connecting user. No other
environment variables are changed.

When running a script or a command the locale is assigned in the following order of priority:
* 1:Value of LC_ ALL
* 2:Value of LC_CTYPE

= 3: Value of LANG

Appendix A: Reference information

Hitachi Ops Center Automator Service Builder User Guide 140

Appendix B: Description of built-in plug-ins

This module describes the plug-ins that are preconfigured in Automator Service Builder.

General Command Plug-in

The General Command Plug-in runs a command line on the destination host.

If you have pre-set authentication information in the Agentless Remote Connections view,
you can run commands by specifying the following information in the general command plug-
in:

= Device on which to run the command (destinationHost property)

* Command to run (commandLine property)

* Command arguments (commandLineParameter property)

If destination host is a Ops Center Automator Server (localhost), the user ID and the
password are unnecessary.

For the command to run on the target device, specify characters that can be used in
commands in the OSs of the Ops Center Automator server and the operation target device.
For example, if the Ops Center Automator server and the target device both run the Windows
OS with Japanese Locale, you can specify characters in the MS932 character set.

When local execution function is enabled and the OS of the local host is Windows, the
command runs with System account privileges. If the OS is Linux, the command runs with
root user privileges. The execution folder for the command is specified as follows:

* When the connection destination is running Windows: Admin$\Hitachi\CMALib\HAD
\home Admins is the folder specified in the windir environment variable.

* When the connection destination is running Linux OS and true is specified for the
elevatePrivileges property: The home folder of the root user

* When the connection destination is running Linux OS and false is specified for the
elevatePrivileges property: The home folder of the connection user

Prerequisites

Specific commands must be installed on the OS of the target device before you use the
general command plug-in.

To use the general command plug-in when the target device is running Windows, you must
enable administrative sharing.

Appendix B: Description of built-in plug-ins

Hitachi Ops Center Automator Service Builder User Guide 141

General Command Plug-in

Cautionary notes

IPV6 is not supported when Ops Center Automator is running on Linux OS and the
destination host is Windows.

The locale and character set at the for running the plug-in depend on the OS of the
operation target device.

If a task is stopped while the plug-in is running, the status of the task changes to Failed or
Completed when the general command plug-in processing finishes. The status of steps
and tasks after plug-in finishes running depends on the return code of the step and the
condition for running subsequent steps. You can set a Subsequent-step Execution
Condition in the Create Step or Edit Step dialog box.

The execution method differs depending on the OS of the target device. The command is
run by SMB and RPC in Windows, and SSH in Linux OS. Therefore, the SSH server must
be set up on Linux-based operation target devices.

The SSH port number is set in the connection-destination properties file (connection-
destinationname.properties) or the properties file (config user.properties).

When the target device is running Windows, user profiles are not inherited. This means a
plug-in can produce different results from a command or script run on the desktop. To
avoid this problem, do not reference settings in user profiles, such as user environment
variables, registry entries, and Internet Explorer settings, when running a plug-in. If a
command or script references an element of a user profile, the command or script might
not behave as expected. For example, when you run a command or script that references
Internet Explorer proxy settings, the command or script might fail with a communication
error. This might occur in scenarios such as implementing a Windows Update using a
script.

If the target device is running Linux OS, and you must specify non-ASCII characters in the
commandLine or commandLineParameter property, the login script setting is required in
the following plug-ins:

* General Command Plug-in
* File-Transfer Plug-in

* Custom Plug-in

* Terminal Command Plug-in

Note: Applies only to the File-Transfer Plug-in when a non-ASCII character is
included in the value of the remoteFilePath property.

Login script setting

You can check the status of the istrip setting in standard output by running the stty -a

command in the command line for each plug-in. If -istrip appears in standard output,

theistrip setting is disabled. If istrip is not prefixed with "-" in standard output, the

istrip setting is enabled.

The following example shows "istrip" with the correct setting:

Appendix B: Description of built-in plug-ins

Hitachi Ops Center Automator Service Builder User Guide 142

General Command Plug-in

rernt = R

If istrip appears without the dash (-) you must edit the login script file and add the line
stty -istrip.

Note: If you use the setting that elevates user permissions to root, the istrip
setting will be overwritten in the login script of the root user. Make sure that the
istrip setting is disabled in the login script of the root user.

Return codes

The General Command Plug-in generates the following return codes:

Return Code Description

0-63 The return code (0 to 63) of the command or script is returned as the
return code of the plug-in. The meaning of the command or script
depends on the command or script.

64 If the return code of the command or script is 64 or higher, 64 is returned
as the return code of the plug-in.

65 The connection with the Ops Center Automator server failed. For
example, the Ops Center Automator server might have stopped while the
plug-in was running.

66 The following user is mapped to the Ops Center Automator user:
* A user who does not belong to the Administrators group.

= A user other than the built-in Administrator who belongs to the
Administrators group, in an environment with UAC enabled.

68 No information about the target job execution ID exists.

69 An environment variable of the task-processing engine cannot be
acquired.

70 The connection with the operation target device failed.

71 Command execution failed.

72 The execution status of the command cannot be acquired.

Appendix B: Description of built-in plug-ins

Hitachi Ops Center Automator Service Builder User Guide 143

General Command Plug-in

Return Code Description
76 The connection timed out.
77 The host name of the operation target device cannot be resolved.
78 Authentication with the operation target device failed for one of the

following reasons:
* Password authentication failed.
* Public key authentication is not set up on the operation target device.

* During authentication of the public key, the private key did not match
the pass phrase.

* During authentication of the public key, the private key did not
correspond to the public key registered in the operation target device.

* During authentication of the public key, a private key was used that is

not valid.
80 Task execution has stopped.
81 The plug-in was called in a status that is not valid.
82 The request message from the task-processing engine cannot be

correctly parsed.

83 The Ops Center Automator server environment is corrupted.
84 Information about the plug-in cannot be obtained.
86 The specified property value is not valid.
127 Another error occurred.
Property list

The following properties are available for the General Command plug-in:

Property key Property name Description 1/0 type

destinationHost R Destination Host Specify the IPv4 address, IPv6 Input
address, or host name of the
operation target device. The host
name cannot exceed 1,024
characters. The Ops Center
Automator server and the
operation target device must be
connected by a network. Note that
multiple IP addresses or host
names cannot be specified.

Appendix B: Description of built-in plug-ins

Hitachi Ops Center Automator Service Builder User Guide 144

General Command Plug-in

Property key Property name Description 1/0 type

credentialType R Credentials Type As the authentication type to use Input
during command or script
execution, specify either of the
following:

Destination

Specify this option to use the
authentication information set in
the Agentless Remote
Connections view. Specifying
destination applies the
authentication information set for
Windows or SSH in the connection
destination definition according to
the IP address of the Ops Center
Automator logon user. You can
omit the specification of properties
relating to authentication
information (account, password,
suPassword,
publicKeyAuthentication), and
keyboardinteractiveAuthentication.

Property

Specify this option to use the
values specified in the following
properties as authentication
information:

= account

= password

= suPassword

= publicKeyAuthentication

* keyboardInteractiveAuthenticati
on

account User ID Specify the user ID to use to log Input
on to the operation target device,
using a maximum of 256
characters.

Appendix B: Description of built-in plug-ins

Hitachi Ops Center Automator Service Builder User Guide 145

General Command Plug-in

Property key

Property name

Description

1/0 type

You can also specify a domain
user in either of the following
formats:

= domain-name \ user-name

= user-name @ domain-name

password

Password

Specify the password to use to log
on to the operation target device,
using a maximum of 256
characters. You can omit this
property when the operation target
device is running Linux OS and
true is specified for the
publicKeyAuthentication property.

Input

suPassword

Root Password

If the OS of the operation target
device is Linux OS, specify the
root password using a maximum of
256 characters. If the OS is
Windows, this property does not
need to be specified. You can also
omit this property when the
operation target device is running
Windows, or when false is
specified for the elevatePrivileges
property.

Input

runAsSystem

Run As System
Account

When running on a Windows host,
you can specify true to run the
command using the system
account or false to allow the
command to run using another
connected user. The connected
user becomes the user specified
for Agentless Remote Connections
or plug-in properties, regardless of
the specification of this property.
The values are not case sensitive.
If you do not specify a value, false
is assumed. If the OS of the
destination host is not Windows,
this value is ignored.

The default value is false.

Input

publicKeyAuthentic
ation

SSH public key
authentication
settings

If the OS of the operation target
device is Linux OS, specify either
of the following depending on

Input

Appendix B: Description of built-in plug-ins

Hitachi Ops Center Automator Service Builder User Guide

146

General Command Plug-in

Property key Property name Description 1/0 type

whether you want to use public
key authentication. The values are
not case sensitive. If you do not
specify a value, false is assumed.
You can omit this property when
the operation target device is
running Windows.

true
Specify this option to use
public key authentication.

false
Specify this option to use
password or keyboard
interactive authentication.

The default value is false.

keyboardInteractiv | SSH keyboard Controls whether to use SSH Input
eAuthentication interactive keyboard interactive authentication
authentication for the Linux OS environment. If
settings the OS of the destination is Linux

OS, the system toggles between
using and not using keyboard
interactive authentication. If the
property is set to true, keyboard
interactive authentication is used.
If the property is set to false,
keyboard interactive authentication
is not used. This property is not
case-sensitive. This property is
valid only when
publicKeyAuthentication is set to
false. If this property does not exist
(which is true for a previous plug-in
version) or if no value is specified,
false is assumed for the property.

The default value is false.

elevatePrivileges Elevate Privileges | If the OS of the operation target Input
device is Linux, specify either of
the following depending on
whether you want to elevate the
user to root privileges. The values
are not case sensitive. If you do
not specify a value, true is
assumed. You can omit this

Appendix B: Description of built-in plug-ins

Hitachi Ops Center Automator Service Builder User Guide 147

General Command Plug-in

Property key Property name Description 1/0 type

property when the operation target
device is running Windows.

true
Specify this option to run
commands as a user with
root privileges.

false
Specify this option to run
commands without
elevating the user to root.
Commands are run with the
privileges of the connection
user.

The default value is false.

commandLine R Command Line Specify the absolute path of the Input
command or script to be run on the
operation target device, using a
maximum of 256 characters. In
Windows, the execution user is
changed according to the
specification of the plug-in property
"runAsSystem". Special characters
that represent environment
variables in the command line are
not escaped. To handle a special
character as a character string,
escape the character with a
percent sign (%) in Windows, and
a backslash (\) in Linux OS. The
command or script is run subject to
the privileges of the following user:

Appendix B: Description of built-in plug-ins

Hitachi Ops Center Automator Service Builder User Guide 148

General Command Plug-in

Property key Property name Description 1/0 type

When the operation target device
is running Windows

= |f destination is specified for the
credentialType property, the
command is run with the
privileges of the user set in the
Agentless Remote Connections
view.

= If property is specified for the
credentialType property, the
command is run with the
privileges of the user specified
in the account property.

When the operation target device
is running Linux OS

= |f destination is specified for the
credentialType property, the
command is run with the
privileges of the root user or the
user set in the Agentless
Remote Connections view,
depending on the value of the
elevatePrivileges property.

= |f property is specified for the
credentialType property, the
command is run with the
privileges of the root user or the
user specified in the account
property, depending on the
value of the elevatePrivileges

property.
commandLinePara | Command-line Specify the arguments of the Input
meter Parameters command or script using a

maximum of 1,024 characters.

Appendix B: Description of built-in plug-ins

Hitachi Ops Center Automator Service Builder User Guide 149

General Command Plug-in

Property key

Property name

Description

1/0 type

As the command line parameters,
specify characters that can be
entered in command lines in the
OSs of the Ops Center Automator
server and the operation target
device. Special characters that
represent environment variables in
the command line are not scaped.
To handle a special character as a
character string, escape the
character with a percent sign (%)
in Windows, and a backslash (\) in
Linux OS. You can also specify an
environment variable as the value
of a command line parameter. The
specification format depends on
the OS of the operation target
device.

If the operation target device is
running Windows:

% environment-variable %

If the operation target device is
running Linux OS:

$ environment-variable

outputCondition

Output Condition

Specifies a condition to be output
to the standard output property
1-3. You can specify the following
values:

= always -- Outputs a null
character even if it does not
match the specified pattern.

= patternMatch -- Outputs only
when matching the standard
output pattern 1-3.

If there is no output in output
properties, mapped service
properties are also not updated.

The default value is Always.

Input

stdoutProperty1

Standard Output
Property 1

The character string extracted by
the stdoutPattern1 property is
output to this property.

Output

Appendix B: Description of built-in plug-ins

Hitachi Ops Center Automator Service Builder User Guide

150

General Command Plug-in

Property key

Property name

Description

1/0 type

stdoutPattern1

Standard Output
Pattern 1

Specify the regular expression
pattern of the standard output to
output to the stdoutProperty1
property, using a maximum of
1,024 characters. Specify the
regular expression pattern in a
PCRE-compliant format. If you
specify the key of a service
property in the stdoutProperty1
property but do not specify the
stdoutPattern1 property, the entire
standard output and standard error
output of the command or script
specified in the commandLine
property is assigned to the service
property.

Input

stdoutProperty2

Standard Output
Property 2

The character string extracted by
the stdoutPattern2 property is
output to this property.

Output

stdoutPattern2

Standard Output
Pattern 2

Specify the regular expression
pattern of the standard output to
output to the stdoutProperty2
property, using a maximum of
1,024 characters. Specify the
regular expression pattern in a
PCRE-compliant format. If you
specify the key of a service
property in the stdoutProperty2
property but do not specify the
stdoutPattern2 property, the entire
standard output and standard error
output of the command or script
specified in the commandLine
property is assigned to the service
property.

Input

stdoutProperty3

Standard Output
Property 3

The character string extracted by
the stdoutPattern3 property is
output to this property.

Output

Appendix B: Description of built-in plug-ins

Hitachi Ops Center Automator Service Builder User Guide

151

General Command Plug-in

Property key Property name Description 1/0 type
stdoutPattern3 Standard Output Specify the regular expression Input
Pattern 3 pattern of the standard output to

output to the stdoutProperty3
property, using a maximum of
1,024 characters. Specify the
regular expression pattern in a
PCRE-compliant format. If you
specify the key of a service
property in the stdoutProperty3
property but do not specify the
stdoutPattern3 property, the entire
standard output and standard error
output of the command or script
specified in the commandLine
property is assigned to the service
property.

R: Required

The standard output or standard error output of the commands or scripts specified in these
properties are output as the standard output of the step in Ops Center Automator. However,
processing for which the total standard output and standard error output of the command or
script exceeds 100 KB is outside the scope of product support. Run the command or script in
advance to make sure that the total standard output and standard error output does not
exceed 100 KB.

If the operation target device is running Windows, the content specified in the commandLine
and commandLineParameter properties are made into a batch file and run on the operation
target device. Therefore, the result of this action might differ from the result if the same
command and script were run from the command prompt.

If the operation target device is running Linux OS, linefeed codes in standard output and
standard error output are changed as follows:

* CR(0x0d) is changed to LF(0x0a)
* CR+LF(0x0d0a) is changed to LF+LF(0x0a0a)

In addition, if the character string at the end of the standard output and standard error output
is not a linefeed code (CR, LF, or CR+LF), LF(0x0a) is added to the end.

Usage example of stdoutPattern and stdoutProperty properties

By using the stdoutPattern property, you can extract the value output to standard output and
store it in the stdoutProperty property. The following figure shows the data flow when
specifying aaabbb(.*) in stdoutPattern1.

Appendix B: Description of built-in plug-ins

Hitachi Ops Center Automator Service Builder User Guide 152

File-Transfer Plug-in

stdoutPattern1 (Standard Output Pattern 1): aaabbb(.*)
stdoutProperty1 (Standard Output Property)

Standard output

aaabbbcce The value is assigned
according to the regular
gSer\rice property A: ccc <— 1| expression pattern.

As defined in stdoutPattern1, for the standard output aaabbbccc, the value after aaabbb (in
this case ccc) is extracted. The extracted value is stored in the stdoutProperty1 property.

Specifying the SSH port number

You can specify a port number when using SSH to connect to the operation target device.
The following table describes how to specify the port number and priority of each method.

Default
Priority Set in Property key value
1 Connection-destination properties file ssh.port --
(connection-destination-
name.properties)
2 Properties file (config user.properties) ssh.port.numb | 22
er

File-Transfer Plug-in

The File-Transfer Plug-in transfers a file or folder to or from a remote host.

If you have pre-set authentication information in the Agentless Remote Connections view,
you can run the File-Transfer Plug-in by specifying the following information:

= operation target device (remoteHost property)

* Transfer mode (transferMode property)

* Path of afile or folder on the Ops Center Automator server (localFilePath property)
* Path of a file or folder on the operation target device (remoteFilePath property)

In the file path for forwarding to the agentless connection destination, specify characters that
can be used in commands in the OSs of the Ops Center Automator server and the operation
target device. For example, if the Ops Center Automator server and the operation target
device are both running the Windows OS with Japanese Locale, characters in the MS932
character set can be specified.

If destination host is a Ops Center Automator server (Localhost), the user ID and the
password are unnecessary.

Appendix B: Description of built-in plug-ins

Hitachi Ops Center Automator Service Builder User Guide 153

File-Transfer Plug-in

If the operation target device is running Windows, the file is transferred by the user set in the
authentication information.

If the operation target device is running Linux OS, the file is transferred subject to the
privileges of the root user or the connection user, depending on the value of the
elevatePrivileges property.

5 Note: If the local execution function is enabled, the file is not forwarded. If the OS
of the local host is Windows, the file is copied to the local host with the privileges
of the System account. If the OS of the local host is Linux, the file is copied to the
local host with root user privileges.

Prerequisites
Depending on the OS of the operation target device, configure the environment as follows:
For Windows

* Make sure that the Ops Center Automator server and operation target device can
communicate using the specified ports.

* Before running the file-forwarding plug-in, enable administrative sharing on the operation
target device.

For Linux OS

* You can set the SSH port number in the connection-destination properties file
(connection-destination-name.properties) or the properties file
(config user.properties).

* On the operation target device, install an SSH server that supports SCP.

Specific commands must be installed in the OS of the operation target device before you use
the File-Transfer Plug-in.

Cautionary notes

* |Pv6 is not supported when Ops Center Automator is running on Linux OS and the
destination host is Windows.

* The execution method differs depending on the OS of the operation target device. File
transfer is implemented by RPC and CIFS (SMB) in Windows, and SSH and SCP in Linux
OS. When selecting a protocol in the definition of an agentless connection destination,
select Windows in Windows and SSH in Linux OS.

= The maximum total size of all transferred files is 4 GB.
= The maximum number of files and folders that can be transferred at a time is 10,000.

* If a received file has the same name as a file that exists locally, the system might try to
overwrite the file. However, if the file to be overwritten has the attribute Read only, Hidden
file, or System file, the file cannot be overwritten and file transfer fails.

* You cannot specify a Windows UNC path or a network drive as the source or destination
of a file transfer.

Appendix B: Description of built-in plug-ins

Hitachi Ops Center Automator Service Builder User Guide 154

File-Transfer Plug-in

On the machine where Ops Center Automator is installed and the connection-destination
host, in addition to the free space needed for the files and folders themselves, an amount
of free space equivalent to twice the size of the transferred files is required as a temporary
work area. The temporary work area is as follows:

* For the machine where Ops Center Automator is installed (non-cluster environment):
The drive where Ops Center Automator is installed.

* For the machine where Ops Center Automator is installed (cluster environment): The
shared disk.

* When the connection-destination is running Windows: The system drive.

* When the connection-destination is running Linux OS: The folder specified in the
plugin.remoteCommand.workDirectory.ssh key in the properties file
config_user.properties).

The limitations of the OS override those set in the Ops Center Automator system.
Examples of these limitations include the maximum size of a file, the number of files per
folder, the length of file and folder names, and the resources available to the user. File
forwarding that exceeds the limitations of the OS is outside the scope of product support.
The OSs whose limitations affect Ops Center Automator are those on the Ops Center
Automator server and on operation target devices. The OS limitations that govern which
resources are available to users are those set for the connection user and for users with
root privileges. Limitations for users with root privileges only apply in Linux OS.

When you specify a folder on a host running Linux OS as the file-transfering destination,
the process might fail if the total size of the files in the folder exceeds the maximum
permitted size for one file. The maximum size for one file is governed by file system
restrictions and OS limitations that apply to the resources available to the user. Ops
Center Automator archives files before sending them, which means that the limits of the
destination host might be exceeded despite the individual files in the archive being smaller
than the maximum size. In this scenario, either reduce the total size of the files in the
folder you are sending, or increase the limits at the destination.

If execution of a task is stopped during plug-in execution, the status of the task becomes
Failed or Completed when the processing of the File-Transfer Plug-in has finished. The
status of steps and tasks after plug-in execution has finished depends on the return code
of the step and the condition for executing subsequent steps. You can set Subsequent-
step Execution Condition in the Create Step dialog box or the Edit Step dialog box.

Return codes

The following return codes are generated by the File-Transfer Plug-in:

Return Code Description

0

Ended normally.

6

5 The connection with the Ops Center Automator server failed. For
example, the Ops Center Automator server might have stopped while the
plug-in was executing.

Appendix B: Description of built-in plug-ins

Hitachi Ops Center Automator Service Builder User Guide 155

File-Transfer Plug-in

Return Code

Description

66 The following user is mapped to the Ops Center Automator user:
= A user who does not belong to the Administrators group.
= A user other than the built-in Administrator who belongs to the
Administrators group, in an environment with UAC enabled.
68 No information about the target job execution ID exists.
69 An environment variable of the task-processing engine cannot be
acquired.
70 The connection with the operation target device failed.
71 An attempt to call a command on the operation target device failed.
72 The execution status of the command cannot be acquired.
73 The file or folder cannot be transferred.
76 The connection timed out.
77 The host name of the operation target device cannot be resolved.
78 Authentication with the operation target device failed for one of the
following reasons:
* Password authentication failed.
= Public key authentication has not been set up on the operation target
device.
* When the public key was being authenticated, the private key did not
match the pass phrase.
* When the public key was being authenticated, the private key did not
correspond to the public key registered in the operation target device.
= When the public key was being authenticated, a private key was used
that is not valid.
80 Task execution has stopped.
81 The plug-in was called in a status that is not valid.
82 The request message from the task-processing engine annot be correctly
parsed.
83 The environment of the Ops Center Automator server is corrupted.
84 Information about the specified plug-in cannot be obtained.
86 The specified property value is not valid.
127 Another error has occurred.

Appendix B: Description of built-in plug-ins

Hitachi Ops Center Automator Service Builder User Guide

156

Property list

File-Transfer Plug-in

The following properties are available for the File-Transfer Plug-in:

Property key

Property name

Description

1/0 type

remoteHost R

Remote Host

Specify the IPv4 address, IPv6
address, or host name of the
operation target device. The
host name must be within
1,024 characters. The Ops
Center Automator server and
the operation target device
must be connected by a
network. Note that multiple IP
addresses or host names
cannot be specified.

Input

credentialType R

Credentials
Type

As the authentication type to
use during command or script
execution, specify either of the
following:

Destination

Specify this option to use the
authentication information set
in the Agentless Remote
Connections view. Specifying
destination applies the
authentication information set
for Windows or SSH in the
connection destination
definition according to the IP
address of the Ops Center
Automator logon user. You can
omit the specification of
properties relating to
authentication information
(account, password,
suPassword,
publicKeyAuthentication), and
keyboardinteractiveAuthenticati
on.

Property

Specify this option to use the
values specified in the

Input

Appendix B: Description of built-in plug-ins

Hitachi Ops Center Automator Service Builder User Guide

157

File-Transfer Plug-in

Property key

Property name

Description

1/0 type

following properties as
authentication information:

= account

= password

= suPassword

= publicKeyAuthentication

= keyboardInteractiveAuthenti
cation

The default value is destination

account

User ID

Specify the user ID to use to
log on to the operation target
device, using a maximum of
256 characters.

You can also specify a domain
user in either of the following
formats:

= domain-name \ user-name

= user-name @ domain-name

Input

password

Password

Specify the password to use to
log on to the operation target
device, using a maximum of
256 characters. You can omit
this property when the
operation target device is
running Linux OS and true is
specified for the
publicKeyAuthentication
property.

Input

suPassword

Root Password

If the OS of the operation
target device is Linux, specify
the root password using a
maximum of 256 characters. If
the OS is Windows, this
property does not need to be
specified. You can also omit
this property when the
operation target device is
running Windows, or when
false is specified for the
elevatePrivileges property.

Input

Appendix B: Description of built-in plug-ins

Hitachi Ops Center Automator Service Builder User Guide

158

File-Transfer Plug-in

Property key

Property name

Description

1/0 type

publicKeyAuthentication

SSH public key
authentication
settings

If the OS of the operation
target device is Linux, specify
either of the following
depending on whether you
want to use public key
authentication. The values are
not case sensitive. If you do
not specify a value, false is
assumed. You can omit this
property when the operation
target device is running
Windows.

true
Specify this option to
use public key
authentication.

false
Specify this option to
use password or
keyboard interactive
authentication.

The default value is false.

Input

Appendix B: Description of built-in plug-ins

Hitachi Ops Center Automator Service Builder User Guide

159

File-Transfer Plug-in

Property key

Property name

Description

1/0 type

keyboardInteractiveAuthe
ntication

SSH keyboard
interactive
authentication
settings

Controls whether to use SSH
keyboard interactive
authentication for the Linux OS
environment. If the OS of the
destination is Linux, the system
toggles between using and not
using keyboard interactive
authentication. If the property is
set to true, keyboard interactive
authentication is used. If the
property is set to false,
keyboard interactive
authentication is not used. This
property is not case-sensitive.
This property is valid only when
publicKeyAuthentication is set
to false. If this property does
not exist (which is true for a
previous plug-in version) or if
no value is specified, false is
assumed for the property.

The default value is false.

Input

elevatePrivileges

Elevate
Privileges

If the OS of the operation
target device is Linux, specify
either of the following
depending on whether you
want to elevate the user to root
privileges. The values are not
case sensitive. If you do not
specify a value, true is
assumed. You can omit this
property when the operation
target device is running
Windows.

true
Specify this option to run
commands as a user
with root privileges.

false
Specify this option to run
commands without
elevating the user to
root. Commands are run

Input

Appendix B: Description of built-in plug-ins

Hitachi Ops Center Automator Service Builder User Guide

160

File-Transfer Plug-in

Property key Property name Description 1/0 type

with the privileges of the
connection user.

The default value is false.

transferMode R Transfer Mode | Specify either of the following Input
as the transfer mode:

send

Specify this option when
transferring a file or folder from
the Ops Center Automator
server to the operation target
device. When you specify a file
path in the localFilePath
property, the same path must
be specified in the
remoteFilePath property. When
transferring a single file, if you
specify different file names in
the localFilePath and
remoteFilePath properties, the
file name specified in the
remoteFilePath property
applies.

receive

Specify this option when
transferring a file or folder from
the operation target device to
the Ops Center Automator
server. When you specify a file
path in the remoteFilePath
property, the same path must
be specified in the
localFilePath property. When
transferring a single file, if you
specify different file names in
the remoteFilePath and
localFilePath properties, the file
name specified in the
localFilePath property applies.

The default value is send.

Appendix B: Description of built-in plug-ins

Hitachi Ops Center Automator Service Builder User Guide 161

File-Transfer Plug-in

Property key

Property name

Description

1/0 type

localFilePath R

Local File Path

Specify the absolute path of
the file or folder on the Ops
Center Automator server using
no more than 256 characters.
In the localFilePath property,
specify characters that can be
used in commands in the OSs
of the Ops Center Automator
server and the operation target
device. If there is a file or folder
with the same name in the
destination folder, the file or
folder is overwritten. For this
reason, you should specify a
unique name. If the destination
folder does not exist, the folder
will be created in the specified
configuration.

Input

remoteFilePath R

Remote File
Path

Specify the absolute path of
the file or folder on the
operation target host in no
more than 256 characters. In
the remoteFilePath property,
specify characters that can be
used in commands in the OSs
of the Ops Center Automator
server and the operation target
device. If the OS of the
operation target device is
Linux, make sure that the
names of the files and folders
you are transferring are
encoded in the same character
set used by the connection
user. If there is a file or folder
with the same name in the
destination folder, the file or
folder is overwritten. For this
reason, you should specify a
unique name. If the destination
folder does not exist, the folder
will be created in the specified
configuration.

Input

R: Required

Appendix B: Description of built-in plug-ins

Hitachi Ops Center Automator Service Builder User Guide

162

File-Transfer Plug-in

When specifying file paths, use characters that can be used in commands in the OSs of the
Ops Center Automator server and the operation target device. When specifying a file name in
the localFilePath property, also specify a file name in the remoteFilePath property. When
specifying a folder name in the localFilePath property, also specify a folder name in the
remoteFilePath property.

Restrictions apply to the files and folders you can specify in the localFilePath and
remoteFilePath properties.

If the operation target device is running Windows and a file with the Windows file attribute
"Encrypt contents to secure data" is included among the transferred files, the transfer of the
file fails, causing an error in the processing of the plug-in.

Restrictions on the names of transferred files and folders

The following table lists the restrictions that apply to the names of transferred files and folders
when the connection destination is Windows or Linux OS:

Table 8 Sending

Ops Center
File or Automator side or
folder destination host side Property Restrictions

File Ops Center Automator | localFilePath File names can be a maximum
of 127 characters.

Destination host remoteFilePath File names can be a maximum
of 127 characters.

Folder Ops Center Automator | localFilePath The longest absolute path of the
file or folder in the transferred
folder can contain no more than
256 characters.

The longest path from the folder
being transferred to a file or
folder under that folder must be
no longer than 127 characters.

Destination host remoteFilePath | The longest absolute path of the
file or folder in the transferred
folder can contain no more than
256 characters.

The longest path from the folder
being transferred to a file or
folder under that folder must be
no longer than 127 characters.

Appendix B: Description of built-in plug-ins

Hitachi Ops Center Automator Service Builder User Guide 163

Table 9 Receiving

File-Transfer Plug-in

Ops Center
File or Automator side or
folder destination host side Property Restrictions
File Ops Center Automator | localFilePath File names can be a maximum
of 127 characters.
Destination host remoteFilePath File names can be a maximum
of 127 characters.
Folder Ops Center Automator | localFilePath The longest absolute path of the

file or folder in the transferred
folder can contain no more than
256 characters.

The longest path from the folder
being transferred to a file or
folder under that folder must be
no longer than 127 characters.

Destination host remoteFilePath

The longest absolute path of the
file or folder in the transferred
folder can contain no more than
256 characters.

The longest path from the folder
being transferred to a file or
folder under that folder must be
no longer than 127 characters.

Specifying the SSH port number

You can specify a port number when using SSH to connect to the operation target device.
The following table describes how to specify the port number and the priority of each method.

(config user.properties)

Priority Set in Property key Default value
1 Connection-destination properties ssh.port --
file (connectiondestination-
name.properties)
2 Properties file ssh.port.number 22

Handling of forwarded files

Forwarded files are handled differently depending on the OS of the operation target device
and the value specified in the transferMode property. The following table describes how
forwarded files are handled:

Appendix B: Description of built-in plug-ins

Hitachi Ops Center Automator Service Builder User Guide

164

Table 10 Windows

File-Transfer Plug-in

Item

send

receive

Time stamp of
forwarded file

When creating
a file

Creation date

Date and time of

Date and time of

and time forwarding forwarding

Update date Update date Update date and

and time and time of time of source
source file file

Access date
and time

Date and time of
forwarding

Date and time of
forwarding

When
overwriting a file

Creation date

Creation date

Creation date

and time and time of and time of
overwritten file overwritten file

Update date Update date Update date and

and time and time of time of source
source file file

Access date
and time

Access date
and time of
overwritten file

Access date and
time of
overwritten file

Access permissions required for source file

System account
read privilege

System account
read privilege

Access permissions required for parent folder of

destination file

Write privilege
of the user set
in the
authentication
information

System account
write privilege

Access permissions required for destination file when

overwriting the file

Write privilege
of the user set

System account
write privilege

in the
authentication
information

Access When creating a file Inherits privilege | Inherits privilege

permission of parent folder | of parent folder

assigned to

destination file When overwriting a file Inherits privilege | Inherits privilege
of overwritten of overwritten
file file

Appendix B: Description of built-in plug-ins
Hitachi Ops Center Automator Service Builder User Guide 165

Table 11 Linux

Repeated Execution Plug-in

Item

send

receive

Time stamp of
forwarded file

When creating
a file

Creation date

Date and time of

Date and time of

and time forwarding forwarding
Update date Date and time of | Date and time of
and time forwarding forwarding

Access date
and time

Date and time of
forwarding

Date and time of
forwarding

When
overwriting a file

Creation date
and time

Date and time of
forwarding

Creation date
and time of
overwritten file

Update date
and time

Date and time of
forwarding

Date and time of
forwarding

Access date
and time

Access date
and time of
overwritten file

Access date and
time of
overwritten file

Access permissions required for source file

System account
read privilege

Read privilege
of connection
user

destination file

Access permissions required for parent folder of

Write privilege
of connection
user

System account
write privilege

overwriting the file

Access permissions required for destination file when

Write privilege
of connection
user

System account
write privilege

Access
permission
assigned to
destination file

When creating a file

Uses the umask
value of root or
the connection
user

Inherits privilege
of parent folder

When overwriting a file

Inherits privilege

Inherits privilege

of overwritten of overwritten
file file
Repeated Execution Plug-in
The Repeated Execution plug-in runs a specific flow repeatedly.
Appendix B: Description of built-in plug-ins
Hitachi Ops Center Automator Service Builder User Guide 166

Repeated Execution Plug-in

You can run a service with a value specified in the Input Properties (inputProperties) for each
iteration of the flow. This is useful, for example, when you want to run the same processing
on different servers. Note that the execution methods for a flow include concurrent execution
that runs flows in parallel, and sequential execution that runs the next flow when the current
flow finishes. In addition, the Repeated Execution Plug-in can have a nested structure, and it
is possible to define the nest of Repeated Execution Plug-in up to 3 levels. When used in the
combination with the Flow Plug-in, up to 25 levels can be defined together with the Flow
Plug-in.

Cautionary notes

= |f the parallel option is specified in the foreachMode property, the value of the properties
(service properties, plug-in output properties, variables) referenced or updated in the
context of a repeated task are only valid for the same repeated task (the nth flow).
Additionally, the value of the property (service property, plug-in output property, variable)
cannot be shared with concurrently processed, repeated tasks (except for the nth flow) or
shared with the repeated tasks of a lower level.

The following figure shows how the plug-ins in each level reference an output property
updated by plug-in Z.

When parallel is setforthe foreachMode property:

Flow

Repeated execution plug-in T —

Plug-in A from Plug-in A

Flow inside the repeated
execution plug-in

Repeated execution plug-in
Can reference

Plug-in Z| Plug-in B from Plug-in B
C) 2 .\ 'C)
L et |, \
7’ N
e N Updat
L1 \\p aLe Qutput property A
s ~ updated by Plug-in Z
s ~
e =

Flow inside the repeated
execution plug-in Cannot reference
Plug-in C from Plug-in C

e O @

Restrictions on the number of flows

The maximum number of flows that can be specified for a Repeated Execution Plug-in is set
through the inputProperties property and cannot exceed 10,000 per service. Note that
the total number of flows does not include the number of flows run in the top-level flow or the
flows associated with the Flow Plug-in.

Appendix B: Description of built-in plug-ins

Hitachi Ops Center Automator Service Builder User Guide 167

Repeated Execution Plug-in

If the number of flows under repetition in the service increases, the response might be
delayed, and it might even cause the browser to crash. Therefore, the upper limit is set for
the number of flows under repetition in the service.

The flow included in the count is only for the Repeated Execution Plug-in, while the flow for
the Flow Plug-in is excluded from the counting target.

Type Counting Target
Flow under Repeated Execution Plug-in Yes
Flow by Flow Plug-in Yes
Other flows No

In the following example, the inputProperties properties of the Repeated Execution Plug-

in is set to repeat plug-in N twice, plug-in M twice, and plug-in Z a total of ten times. Thus, the
total number of flows is calculated as follows: N+N*M+Z (2+2*2+10) = 16.

Top-level flow

Repeated Repeated
execution plug-in _execution plug-in

- ==
- =~
- - ~
- -~ ~~. . TTmmeeal
L w2l T
B _— ——
-

First execution Second execution First execution Tenth execution
Flow of the repeated Flow of the repeated Flow of the repeated Flow of the repeated
execution plug-in execution plug-in execution plug-in execution plug-in

Repeated Repeated

execution plug-in execution plug-in O O O O O O

’ N N -~ A Tt ‘Z- -
J T Tt
Sen S el -
ra RCTN Teee
First execution Second execution First execution Second execution
Flow of the repeated Flow of the repeated Flow of the repeated Flow of the repeated
execution plug-in execution plug-in execution plug-in execution plug-in

O—=>0—>0 O0—=>0—>0 O—=0—>0 O—>0—0

M M

The input values and loop index for the Repeated Execution plug-in a nested configuration
that derives the input values and loop index values using the following reserved properties:

= reserved.loop.inputN

= reserved.loop.indexN
a Note: If the Repeated Execution Plug-in is nested, you might encounter browser
problems during debugging, in which case, you should reduce the value set for

the property " inputProperties " for each Repeated Execution Plug-in, and then
repeat the debugging.

Appendix B: Description of built-in plug-ins

Hitachi Ops Center Automator Service Builder User Guide 168

Repeated Execution Plug-in

Note: Set the property "inputProperties" for each Repeated Execution Plug-in so
that the total number of flows does not exceed 10000. The flows for the Flow
Plug-in are not included in the number of flows calculation.

Return Codes

The Repeated Execution Plug-in generates the following return codes:

Return Code

Description

0 Ended normally.

1 Some of the repeated processing failed.

2 All of the repeated processing failed.

3 The total number of flows under the Repeated Execution Plug-in in the
service exceeds the upper limit.

65 The connection with the Ops Center Automator server failed. For
example, the Ops Center Automator server might have stopped while the
plug-in was being run.

66 The following user is mapped to the Ops Center Automator user:

* A user who does not belong to the Administrators group.
= A user other than the built-in Administrator who belongs to the
Administrators group, in an environment with UAC enabled.

68 No information about the target job execution ID exists.

69 An environment variable of the task-processing engine cannot be
acquired.

80 Task execution has stopped.

81 The plug-in was called in a status that is not valid.

82 The request message from the task-processing engine cannot be
correctly parsed.

83 The environment of the Ops Center Automator server is corrupted.

84 Information about the specified plug-in cannot be obtained.

86 The specified property value is not valid.

127 Another error has occurred.

Property list

Following are the properties for the Repeated Execution Plug-in:

Appendix B: Description of built-in plug-ins

Hitachi Ops Center Automator Service Builder User Guide 169

Repeated Execution Plug-in

Property key Property name Description 1/0 type

inputProperties R Input Properties | Specifies an input property value for | Input
each repetition of the flow, using no
more than 1,024 characters. You can
specify a different property for each
repetition. Use a comma to separate
properties. Commas can only be
used as delimiting characters. The
maximum number of repetitions is
99. You cannot specify 100 or more
comma separated values.

outputProperties Output Properties | Outputs the value of the output Output
property for the number of
repetitions. The total output is 1,024
characters or less. At each repetition,
one property value is output
separated by a comma in the order
specified in the inputProperties
property. Use a comma as the
delimiting character.

outputResult Results The execution result of each flow is Output
output, separated by commas.

true

Output when the flow is run
successfully.

false

Output when execution of the flow
fails.

foreachMode R Mode Specify the execution method for the | Input
repeated flow.

parallel
Repeated flows are run in
parallel.

Appendix B: Description of built-in plug-ins

Hitachi Ops Center Automator Service Builder User Guide 170

Email Notification Plug-in

Property key Property name Description 1/0 type

A maximum of 99 flows can be
run in parallel. If the maximum
is exceeded, the excess flows
are run when the number of
executing flows falls below the
maximum. You can change the
number of concurrently
executable flows between 1
and 99 using the
foreach.max_value key in the
properties file

(config user.properties)
Even if an error occurs, all the
unexecuted flows will be run.

serial
Repeated flows are run
sequentially. If an error occurs,
unexecuted repeated flows are
not run.

The default value is parallel.

R: Required

Email Notification Plug-in

The Email notification plug-in sends emails to the specified destination.

This plug-in enables the connection to the SMTP server to transmit email with the specified
recipient, subject, and body.

Prerequisites

The following information is obtained from built-in service share properties. Therefore, set the
values for these items in advance in the System Settings view.

* Address of the SMTP server
* Port number

* UserlID

* Password

= Originator of the notification email

Appendix B: Description of built-in plug-ins

Hitachi Ops Center Automator Service Builder User Guide 171

Email Notification Plug-in

Cautionary notes

= Even if you do not specify the toAddress, ccAddress, and bccAddress properties, the
return code will be 0.

* The mail address to be specified differs from the value of the built-in service share
properties. Therefore, make sure that you specify at least one of the toAddress,
ccAddress, and bccAddress properties.

= |f any of the toAddress, ccAddress, and bccAddress properties has an email address
specified that is not valid, email transmission will fail to all the addresses.

* |f you use machine-dependent characters or characters that are incompatible between
character sets in the mailSubject or mailBody property, the characters are replaced with
question marks (?) or other characters. In this scenario, either change the characters in
the email, or change the encoding.

* The following characters might not be converted correctly:

~ YN~ =, 8,

* |f the execution of a task is stopped while the plug-in is executing, the status of the task
becomes Failed or Completed when the processing of the email notification plug-in
finishes. The status of steps and tasks after plug-in execution has finished depends on the
return code of the step and the condition for executing subsequent steps. You can set a
Subsequent-step Execution Condition in the Create Step dialog box or the Edit Step
dialog box.

Return codes

The Email Notification Plug-in generates the following return codes:

Return Code Description

0 Ended normally.

65 The connection with the Ops Center Automator server failed. For
example, the Ops Center Automator server might have stopped while
the plug-in was being run.

66 The following user is mapped to the Ops Center Automator user:
= A user who does not belong to the Administrators group.

= A user other than the built-in Administrator who belongs to the
Administrators group, in an environment with UAC enabled.

68 No information about the target job execution ID exists.

69 An environment variable of the task-processing engine cannot be
acquired.

70 The connection with the SMTP server failed.

78 Authentication failed.

Appendix B: Description of built-in plug-ins

Hitachi Ops Center Automator Service Builder User Guide 172

Email Notification Plug-in

Return Code

Description

79 Email transmission failed.

80 Task execution has stopped.

81 The plug-in was called in a status that is not valid.

82 The request message from the task-processing engine cannot be

correctly parsed.

83 The environment of the Ops Center Automator server is corrupted.
84 Information about the specified plug-in cannot be obtained.

86 The specified property value is not valid.

127 Another error has occurred.
Property list

The following properties are available for the Email Notification Plug-in:

Property
key

Property
name

Description

Default
value

1/0 type

Requir
ed

toAddress

To
Addresses

Specify the email addresses
of recipients to enter in the
TO attribute, using no more
than 1,024 characters. When
specifying multiple
addresses, separate them
with commas.

Input

ccAddress

Cc
Addresses

Specify the email addresses
of recipients to enter in the
CC attribute, using no more
than 1,024 characters. When
specifying multiple
addresses, separate them
with commas.

Input

bccAddress

Bcc
Addresses

Specify the email addresses
of recipients to enter in the
BCC attribute, using no more
than 1,024 characters. When
specifying multiple
addresses, separate them
with commas.

Input

Appendix B: Description of built-in plug-ins

Hitachi Ops Center Automator Service Builder User Guide

173

User-Response Wait Plug-in

Property Property Default Requir
key name Description value | I/O type ed
encodeType | Encoding Specify the encoding of the utf-8 Input R
email as one of the following:
" us-ascii
" is0-2022-jp
= shift_jis
"= eucp
= utf-8
mailSubject | Subject Specify the subject line of the | -- Input R
email using no more than 256
characters.
mailBody Body Specify the body text of the -- Input 0]

email using no more than
1,024 characters.

User-Response Wait Plug-in
The User-Response Wait Plug-in enables a user to select the processing of the succeeding
step when running the service.

To select the processing, the user uses the Respond dialog box. You can also set up email
notification to notify the user that a task is waiting for a response.

You can access the Respond dialog box as follows:
* Link from the URL in the response wait notification mail

= Link from the Tasks view

Prerequisites

The following information is obtained from built-in service share properties. Therefore, to
notify the user when a task is waiting for a response, set the values for these parameters in
advance in the System Settings view.

* Address of the SMTP server
* Port number

= UserID

= Password

= QOriginator of the notification email

Appendix B: Description of built-in plug-ins

Hitachi Ops Center Automator Service Builder User Guide 174

User-Response Wait Plug-in

Cautionary notes

The email reporting that a task is waiting for a user response is not sent if any of the
following applies:

* No value is set in the built-in service share property.
* SMTP has not been set up.
* None of the toAddress, ccAddress, and bccAddress properties are specified.

* An email address that is not valid is specified in any of the toAddress, ccAddress, and
bccAddress properties.

The mail address to be specified differs from the value of the built-in service share
properties. Therefore, make sure that you specify at least one of the toAddress,
ccAddress, and bccAddress properties.

Do not stop the user-response wait plug-in while the Respond dialog box is visible and
waiting for a response. Stopping it causes an error even if the operator selects processing
for the subsequent step.

A URL that links to the Respond dialog box is automatically entered in the body of the
notification email. If more than one step in a task is waiting for a response, each step that
runs the user-response wait plug-in has a different URL, with each URL visible in the
Respond dialog box for that step.

When you respond in other than the URL that links to the Respond dialog box, if there are
multiple responses waiting, the response must be input from the oldest waiting response.

You cannot change the layout of the Respond dialog box.

Any return code from the properties labelButton1 to labelButton9 is considered an
abnormal end, and error information is output to the task log. For the labelButton0
property and the properties labelButton1 to labelButton9, if the output log level is 10 or 20,
the output details in the task log differ depending on the response result.

If you use machine-dependent characters or characters that are incompatible between
character sets in the mailSubject or mailBody property, the characters are replaced with
question marks (?) or other characters. In this scenario, either change the characters in
the email, or change the encoding.

The following characters might not be converted correctly:

~ YN~ = 68,

Appendix B: Description of built-in plug-ins

Hitachi Ops Center Automator Service Builder User Guide 175

User-Response Wait Plug-in

= Even if the task is stopped or forcibly stopped, when you run Retry the Task From the Step
After the Failed Step, the subsequent steps are run without response input. To prevent
subsequent steps from being run,we recommended that you uncheck Retry under
[Available Actions] in the Create/Edit Service window.

* When specifying users who can respond with the responseUser property, note the

following:

* If a task is run by specifying only non-existent users or the user who submitted the task
for the responseUser property, the task cannot be responded to using any user. In this
case, you must stop or forcibly stop the task.

* You cannot respond as the user who submitted the task, even in the Service Builder
Debug window. To run subsequent plug-ins of User-Response Wait Plug-in on the
Service Builder Debug window, either do not specify a value for the responseUser
property or run User-Response Wait Plug-in in dry-run mode.

Return codes

The User-Response Wait Plug-in generates the following return codes:

Return Code Description

0-9 Returns the return code corresponding to the labelButton1 to
labelButton9 properties. If a timeout occurs while waiting for a
response, the value specified in the timeOutDefault property is
returned as the return code. Therefore, the meaning of the return code
depends on the service template that is using the plug-in.

10-63 If a timeout occurs while waiting for a response, the value specified in
the timeOutDefault property is returned as the return code.

65 The connection with the Ops Center Automator server failed. For
example, the Ops Center Automator server might have stopped while
the plug-in was being run.

66 The following user is mapped to the Ops Center Automator user:
= A user who does not belong to the Administrators group.

* A user other than the built-in Administrator who belongs to the
Administrators group, in an environment with UAC enabled.

68 No information about the target job execution ID exists.

69 An environment variable of the task-processing engine cannot be
acquired.

80 Task execution has stopped.

81 The plug-in was called in a status that is not valid.

82 The request message from the task-processing engine cannot be
correctly parsed.

Appendix B: Description of built-in plug-ins

Hitachi Ops Center Automator Service Builder User Guide 176

User-Response Wait Plug-in

Return Code

Description

83 The environment of the Ops Center Automator server is corrupted.
84 Information about the specified plug-in cannot be obtained.
86 The value set for the mapping parameter in the Response Input
dialog box is contrary to the property restriction.
127 Another error has occurred.
Property list

The following properties are available from the User-Response Wait Plug-in:

Property
key

Property
name

Description

Default
value

1/0 type

Requir
ed

toAddress

To
Addresses

Specify the email addresses
of recipients to enter in the
TO attribute, using no more
than 1,024 characters.
When specifying multiple
addresses, separate them
with commas.

Input

false

ccAddress

Cc
Addresses

Specify the email addresses
of recipients to enter in the
CC attribute, using no more
than 1,024 characters.
When specifying multiple
addresses, separate them
with commas.

Input

false

bccAddress

Bcc
Addresses

Specify the email addresses
of recipients to enter in the
BCC attribute, using no
more than 1,024 characters.
When specifying multiple
addresses, separate them
with commas.

Input

false

mailSubject

Subject

Specify the subject line of
the email using no more
than 256 characters.

Input

false

mailBody

Body

Specify the body text of the
email using no more than
1,024 characters.

Input

false

Appendix B: Description of built-in plug-ins

Hitachi Ops Center Automator Service Builder User Guide

177

User-Response Wait Plug-in

Property
key

Property
name

Description

Default

Requir

value 1/0 type ed

encodeType

Encoding

Specify the encoding of the
email as one of the
following:

* us-ascii

* is0-2022-jp
= shift_jis

" euc-jp

= utf-8

utf-8

Input false

dialogText

Response
Input Dialog
Box

Specify the information to
display in the Respond
dialog box. You can specify
the information in text or
HTML format.

Input true

responseTi
meOut

Response
Timeout

Specify the time, between 1
and 20,160 (in minutes),
before timeout occurs while
waiting for a response.

1440

Input true

timeOutDef
ault

Default
Return Value

Specify the return code to
return when a timeout
occurs while waiting for a
response. When the timeout
period has passed, this
value is returned as the
return code. For example,
when 0 is specified and the
timeout period elapses, the
processing corresponding to
the option associated with
the labelButtonO property
will be run. Specify a return
code in the range from 0 to
63.

Input true

labelButton0O

Label Button
0

Specify the option label for
the response that generates
return code 0, using a
maximum of 256 characters.
You can display options that
meet the user's functional
needs in the Respond
dialog box.

Input false

Appendix B: Description of built-in plug-ins

Hitachi Ops Center Automator Service Builder User Guide

178

User-Response Wait Plug-in

Property Property Default Requir
key name Description value 1/0 type ed
labelButton1 | Label Button | Specify the option label for | -- Input false
1 the response that generates

return code 1, using a
maximum of 256 characters.
You can display options that
meet the user's functional
needs in the Respond
dialog box. If you omit this
property, the corresponding
option is not visible.

labelButton2 | Label Button | Specify the option label for | -- Input false
2 the response that generates
return code 2, using a
maximum of 256 characters.
you can display options that
meet the user's functional
needs in the Respond
dialog box. If you omit this
property, the corresponding
option is not visible.

labelButton3 | Label Button | Specify the option label for | -- Input false
3 the response that generates
return code 3, using a
maximum of 256 characters.
you can display options that
meet the user's functional
needs in the Respond
dialog box. If you omit this
property, the corresponding
option is not visible.

labelButton4 | Label Button | Specify the option label for | -- Input false
4 the response that generates
return code 4, using a
maximum of 256 characters.
you can display options that
meet the user's functional
needs in the Respond
dialog box. If you omit this
property, the corresponding
option is not visible.

Appendix B: Description of built-in plug-ins

Hitachi Ops Center Automator Service Builder User Guide 179

User-Response Wait Plug-in

Property Property Default Requir
key name Description value 1/0 type ed
labelButton5 | Label Button | Specify the option label for | -- Input false
5 the response that generates

return code 5, using a
maximum of 256 characters.
you can display options that
meet the user's functional
needs in the Respond
dialog box. If you omit this
property, the corresponding
option is not visible.

labelButton6 | Label Button | Specify the option label for | -- Input false
6 the response that generates
return code 6, using a
maximum of 256 characters.
you can display options that
meet the user's functional
needs in the Respond
dialog box. If you omit this
property, the corresponding
option is not visible.

labelButton7 | Label Button | Specify the option label for | -- Input false
7 the response that generates
return code 7, using a
maximum of 256 characters.
you can display options that
meet the user's functional
needs in the Respond
dialog box. If you omit this
property, the corresponding
option is not visible.

labelButton8 | Label Button | Specify the option label for | -- Input false
8 the response that generates
return code 8, using a
maximum of 256 characters.
you can display options that
meet the user's functional
needs in the Respond
dialog box. If you omit this
property, the corresponding
option is not visible.

Appendix B: Description of built-in plug-ins

Hitachi Ops Center Automator Service Builder User Guide 180

User-Response Wait Plug-in

Property Property Default Requir
key name Description value 1/0 type ed
labelButton9 | Label Button | Specify the option label for | -- Input false
9 the response that generates

return code 9, using a
maximum of 256 characters.
you can display options that
meet the user's functional
needs in the Respond
dialog box. If you omit this
property, the corresponding
option is not visible.

responseUs | Users who Specify the users who can - Input false
er can respond | respond?, using a maximum
of 1024 characters. The
specifiable characters are
half-width alphanumeric
characters and symbols

(#$%& ()*+-.=@\"
_

When specifying multiple
users, separate them with
commas. The user who
submitted the service
cannot respond even if that
user is specified.

If no users are entered, then
all users can respond,
including the user who
submitted the service.?

1. When specifying the users authenticated by Common Services, specify the users in
the following format:

Authentication type What to specify

User directory (Active Directory) Specify the User ID at login.

User directory (LDAP server)

Local users

ID provider (OIDC) Specify the User ID in UPN format.

Appendix B: Description of built-in plug-ins

Hitachi Ops Center Automator Service Builder User Guide 181

User-Response Wait Plug-in

Property Property
key name

Description

Default Requir
value 1/0 type ed

Authentication type

What to specify

ID provider (SAML)

Specify the User ID in the Claim
Issuance Policy setting for AD FS and
NamelD Policy Format in Common
Services.

at login.

For details, see the Hitachi Ops Center Installation and Configuration Guide.

When specifying the users authenticated by Common Component, specify the User ID

Note: When responding by the users authenticated by Common
Component, be sure to log in with the value specified for the
responseUser property. When specifying a user registered in an external
authentication server or external authorization server, if the login format is
different from the format specified for the responseUser property, such as
User ID including the domain name or User ID not including the domain
name, response input cannot be done.

2. If the minimum length of the responseUser property is set to 1 or more, it cannot be
set to empty (default value). When using this property, it is recommended that the
minimum length of the property be set to 1 or more in order to make the setting of
responseUser mandatory in the Create/Edit Service and Submit Service Request
windows. See Specify the property settings (on page 52) for details.

HTML tags and attributes that can be specified in the dialogText property

When specifying the display contents in the dialogText property in HTML format, use the tags

listed in the following table:

Tag

Attribute

Notes and restrictions

Anchor tag (<a>)

When using the <a> tag, the
target attribute must be left
blank. If this tag is not
specified, a page is loaded
into the Response Input
dialog box.

href

target

Specify "_blank."

Bold tag ()

Appendix B: Description of built-in plug-ins

Hitachi Ops Center Automator Service Builder User Guide 182

User-Response Wait Plug-in

Tag

Attribute

Notes and restrictions

Break tag (
)

Font tag ()

color

face

size

Italic tag (<i>)

Underline tag (<u>)

Form tag (<form>)

Input tag (<input>)

It is common to be enclosed
with form tags, but since it is
not required to be sent, there
is no need to be enclosed
with form tags.

name

If you specify the service
property key, you can
change the mapping
parameter of the service
property specified in the
Response Input dialog box
while waiting for a response.

type

"text", "check box", "radio"
can be specified.

value

When the type attribute is
"check box", "radio", set the
value attribute. The value set
in the value attribute of the
item checked with the check
box or the radio control
element becomes the
mapping parameter of the
service property specified by
the name attribute.

Select tag (<select>)

name

If you specify the service
property key, you can
change the mapping
parameter of the service
property specified in the
Response Input dialog box
while waiting for a response.

Appendix B: Description of built-in plug-ins

Hitachi Ops Center Automator Service Builder User Guide 183

Terminal Connect Plug-in

Tag Attribute Notes and restrictions
Option tag (<option>) Use select tags to enclose.
value The value set in the value

attribute of the item selected
in the select menu or the list
box becomes the mapping
parameter of the service
property specified by the
name attribute of the select
tag.

Terminal Connect Plug-in

Enables terminals to establish connections.

The Terminal Connect Plug-in allows you to connect to an operation target device by using
Telnet or SSH and authenticate.

When connecting by Telnet, set the user ID and password as needed. For SSH connections,
you can select password authentication, public key authentication, or keyboard interactive
authentication as the authentication method. You must set the following information in the
plug-in properties or from the Agentless Remote Connections view.

= Authentication method (password authentication, public key authentication or keyboard
interactive authentication)

* |Information required for password authentication (user ID and password)
* Information required for public key authentication (user ID)
* Information required for keyboard interactive authentication (user ID and password)

The commands specified in the terminal command plug-in are run with the privileges of the
user authenticated by the terminal connect plug-in. To run a command with administrator
privileges, you must run the command in the terminal command plug-in that elevates the user
to administrator privileges.

Appendix B: Description of built-in plug-ins

Hitachi Ops Center Automator Service Builder User Guide 184

Terminal Connect Plug-in

Prerequisites

The plug-in uses the protocol specified in the protocol property to communicate with the
Ops Center Automator server.

When connecting by Telnet, the plug-in detects when the operation target device is
prompting the operator for a user ID and password. Set one of the following files as
needed. If you set both files, Ops Center Automator uses the values set in the connection-
destination properties file (connection-destination-name.properties).

* telnet.prompt.account and telnet.prompt.password in the connection-destination
properties file (connection-destination-name.properties)

* plugin.terminal.prompt.account and plugin.terminal.prompt.password in the properties
file (config user.properties)

Cautionary notes

The plug-in waits for standard output for the length of time specified in the readWaitTime
property. If the time specified in readWaitTime elapses after output to standard output has
ceased, plug-in execution ends in an error. Make sure that the value of the readWaitTime
property is valid before using the plug-in.

If the value output to standard output matches the regular expression pattern specified in
the promptPattern property, the plug-in ends immediately.

After using Telnet to establish a connection to an operation target device, the plug-in waits
for standard output and standard error output for the length of time set in the
telnet.connect.wait property in the properties file (config user.properties). If the
connection destination service is a Web server or other entity that does not produce
standard output or standard error output, set the port number of the service in the
telnet.noStdout.port.list property of the connection-destination properties file
(connection-destinationname.properties). If you set the port number, the plug-
in finishes executing without waiting for standard output or standard error output.

If the execution of a task is stopped while the plug-in is executing, the status of the task
becomes Failed or Completed when the processing of the terminal connect plug-in
finishes. The session and token are then discarded. The status of steps and tasks after
plug-in execution has finished depends on the return code of the step and the condition for
executing subsequent steps. You can set a Subsequent-step Execution Condition in the
Create Step dialog box or the Edit Step dialog box.

The terminal connect plug-in maintains the connection even if Telnet authentication fails.
To ebd the connection, you must run a terminal disconnect plug-in. However, if the task
enters Failed or Completed status, the connection ends automatically and you do not must
run the terminal disconnect plug-in.

The standard output and standard error output of a terminal connect plug-in is output as
the standard output of the Ops Center Automator step. The size of the standard output
and standard error output is the total number of bytes received by Ops Center Automator.
If the Telnet server or SSH server is configured to replace the linefeed character LF with
CR+LF, allow two bytes for each linefeed character. The results of processing whose total
standard output and standard error output exceeds 100 KB is outside the scope of product
support. Make sure that the total standard output and standard error output does not
exceed 100 KB.

Appendix B: Description of built-in plug-ins

Hitachi Ops Center Automator Service Builder User Guide 185

Terminal Connect Plug-in

* The terminal connect plug-in cannot detect authentication errors in Telnet connections. For
this reason, specify a regular expression pattern that detects authentication errors in
standard output and standard error output in any of stdoutPattern1 to stdoutPattern3.

* When the Terminal Connect Plug-in version is less than 02.00.00, "patternMatch" is set in
"outputCondition". But, the default value of "outputCondition" is "always" in the case of
version 02.00.00. When you upgrade Terminal Connect Plug-in, keep this in mind.

Return codes

The Terminal Connect Plug-in generates the following return codes:

Return Code

Description

0-63 If standard output or standard error output matches the regular
expression pattern specified in the returnCodePattern property, the plug-
in returns the return code specified in the returnCode property. If
standard output and standard error output do not match the pattern
specified in the returnCodePattern property, the plug-in returns the return
code specified in the defaultReturnCode property. Therefore, the
meaning of the return code depends on the service template that is
using the plug-in.

65 The connection with the Ops Center Automator server failed. For
example, the Ops Center Automator server might have stopped while
the plug-in was being run.

66 The following user is mapped to the Ops Center Automator user:
= A user who does not belong to the Administrators group.
= A user other than the built-in Administrator who belongs to the

Administrators group, in an environment with UAC enabled.

68 No information about the target job execution ID exists.

69 An environment variable of the task-processing engine cannot be
acquired.

70 The connection with the operation target device failed.

76 The connection timed out.

77 The host name of the operation target device cannot be resolved.

78 When connecting by SSH, authentication on the operation target device
failed.

80 Task execution has stopped.

81 The plug-in was called in a status that is not valid.

82 The request message from the task-processing engine cannot be

correctly parsed.

Appendix B: Description of built-in plug-ins

Hitachi Ops Center Automator Service Builder User Guide 186

Terminal Connect Plug-in

Return Code

Description

83 The environment of the Ops Center Automator server is corrupted.

84 Information about the specified plug-in cannot be obtained.

86 The specified property value is not valid.

87 Standard output and standard error output have timed out.

88 The maximum number of tokens (99 per task) has been reached. The
total standard output and standard error output has exceeded 100 KB.

127 Another error has occurred.

Property list

The following properties are available for the Terminal Connect Plug-in:

Property key

Property
name

Description

1/0 type Required

destinationHost

Destination
Host

Specify the IPv4 address,
IPv6 address, or host
name of the operation
target device using no
more than 1,024
characters. Multiple IP
addresses or host names
cannot be specified.

Input true

protocol

Protocol

Specify the protocol to use
when connection to the
operating target device.
You can specify the
following protocols:

= Telnet
= SSH
The default is Telnet.

Input false

credentialType

Credentials
Type

As the authentication type
to use during command or
script execution, specify
either of the following:

Destination

Specify this option to use
the authentication

Input true

Appendix B: Description of built-in plug-ins

Hitachi Ops Center Automator Service Builder User Guide

187

Terminal Connect Plug-in

Property key

Property
name

Description

1/0 type Required

information set in the
Agentless Remote
Connections view.
Specifying destination
applies the authentication
information set for Telnet
or SSH in the connection
destination definition
according to the IP
address of the Ops Center
Automator login user. You
can omit the specification
of properties relating to
authentication information
(account, password,
suPassword,
publicKeyAuthentication,
and
keyboardinteractiveAuthen
tication).

Property

Specify this option to use
the values specified in the
following properties as
authentication information:

= account
= password
= suPassword

= publicKeyAuthenticatio
n

= KkeyboardInteractiveAut
hentication

account

User ID

Specify the user ID to use
to log on to the operation
target device, using a
maximum of 256
characters.

Input false

Appendix B: Description of built-in plug-ins

Hitachi Ops Center Automator Service Builder User Guide 188

Terminal Connect Plug-in

Property key

Property
name

Description

1/0 type Required

This property is required if
both of the following are
true:

= SSH is specified in the
protocol property.

= property is specified in
the credentialType
property.

password

Password

Specify the password to
use to log on to the
operation target device,
using a maximum of 256
characters. This property
is required if all of the
following conditions are
met:

= SSH is specified in the
protocol property.

= property is specified in
the credentialType
property.

= false is specified in the
publicKeyAuthenticatio
n property.

If the OS of the operation
target device is Linux and
true is specified for the
publicKeyAuthentication
property, any value you
specify is ignored. You
can, however, set a value
for the
reserved.terminal.passwor
d reserved property to
reference.

Input false

Appendix B: Description of built-in plug-ins

Hitachi Ops Center Automator Service Builder User Guide 189

Terminal Connect Plug-in

Property key

Property
name

Description

1/0 type Required

suPassword

Administrator
Password

Specify the password
required to elevate the
user to administrator
privilege, using a
maximum of 256
characters. The value of
the suPassword property
is assigned to the
reserved.terminal.suPass
word property when you
specify the latter in the
command line or a
terminal command plug-in.

Input false

publicKeyAuth
entication

SSH public key
authentication
settings

If the OS of the operation
target device is Linux,
specify either of the
following depending on
whether you want to use
public key authentication.
The values are not case
sensitive. If you do not
specify a value, false is
assumed. You can omit
this property when the
operation target device is
running Windows.

true

Specify this option to use
public key authentication.

false

Specify this option to use
password authentication or
keyboard interactive
authentication.

The default is false.

Input false

Appendix B: Description of built-in plug-ins

Hitachi Ops Center Automator Service Builder User Guide

190

Terminal Connect Plug-in

Property key

Property
name

Description

1/0 type Required

keyboardintera
ctiveAuthentica
tion

SSH keyboard
interactive
authentication
settings

Controls whether to use
SSH keyboard interactive
authentication for the
Linux OS environment. If
the OS of the destination
is Linux OS, the system
toggles between using and
not using keyboard
interactive authentication.
If the property is set to
true, keyboard interactive
authentication is used. If
the property is set to false,
keyboard interactive
authentication is not used.
This property is not case-
sensitive. This property is
valid only when
publicKeyAuthentication is
set to false. If this property
does not exist (which is
true for a previous plug-in
version) or if no value is
specified, false is assumed
for the property.

The default is false.

Input false

Port

Port Number

Specify the port number to
use when connecting to
the operating target
device.

Input false

charset

Character Set

Specify the character set
to use when writing to the
standard input of the
operation target device
and reading from standard
output and standard error
output. Specify the same
character set as that of the
user who logs in to the
operation target. The
names of character sets
are not case sensitive. You

Input false

Appendix B: Description of built-in plug-ins

Hitachi Ops Center Automator Service Builder User Guide

191

Terminal Connect Plug-in

Property key

Property
name

Description

1/0 type Required

can specify the following
character sets:

= EUC-JP

" eucjp

= ibm-943C

= 1S0-8859-1
= MS932

= PCK

= Shift_JIS

= UTF-8

= windows-31j

lineEnd

Newline
Character

When Telnet is specified in
the protocol property of the
terminal connect plug-in,
specify the newline
character to append to the
values specified in the
account and password
properties. You can specify
the following:

= CR
- LF
* CRLF

To use 0x0D as the
newline character, specify
CR. To use 0x0A, specify
LF, and to use 0xODOA,
specify CRLF.

The default is CR.

Input false

Appendix B: Description of built-in plug-ins

Hitachi Ops Center Automator Service Builder User Guide 192

Terminal Connect Plug-in

Property key

Property
name

Description

1/0 type Required

promptPattern

Prompt Pattern

Specify the regular
expression pattern to use
to detect prompts in
standard output and
standard error output,
using no more than 1,024
characters. This property
is used to detect when the
operation target device is
ready to run commands
after the connection is
established. Specify the
pattern in a PCRE-
compliant format. When
the output matches the
specified regular
expression pattern, the
plug-in ends immediately.
If the output does not
match the pattern, the
plug-in ends in an error
when the time set in the
readWaitTime property
has elapsed since the last
output to standard output
or standard error output.

Input true

readWaitTime

Standard
Output Wait
Time

When logging in to an
operation target device,
specify how long to wait
after output to standard
output or standard error
output until the next
output. Specify the timeout
time in a range from 1 to
86,400,000 (in
milliseconds).

The default is 60000

Input false

Appendix B: Description of built-in plug-ins

Hitachi Ops Center Automator Service Builder User Guide

193

Terminal Connect Plug-in

Property key

Property
name

Description

1/0 type Required

token

Token String

The token string that
identifies the session is
output to this property. You
can specify the character
string output to this
property in the token
property of terminal
command plug-ins and
terminal disconnect plug-
ins.

Output false

outputConditio
n

Output
Condition

Specifies a condition to be
output to the standard
output property 1-3. You
can specify the following
values:

= always -- Outputs a null
character even if it
does not match the
specified pattern.

= patternMatch --
Outputs only when
matching the standard
output pattern 1-3.

If there is no output in
output properties, mapped
service properties are also
not updated.

The default is a;ways.

Input false

stdoutPattern1

Standard
Output Pattern
1

Specify the regular
expression pattern of the
standard output and
standard error output to
output the stdoutProperty
property, using a
maximum of 1,024
characters. Specify the
pattern in a PCRE-
compliant format.

If you use more than 1,024
characters, the 1,025th
and subsequent
characters are discarded.

Input false

Appendix B: Description of built-in plug-ins

Hitachi Ops Center Automator Service Builder User Guide

194

Terminal Connect Plug-in

Property key

Property
name

Description

1/0 type Required

stdoutProperty
1

Standard
Output
Property 1

The character string
extracted by the
stdoutPattern1 property is
output to this property.

Output false

stdoutPattern2

Standard
Output Pattern
2

Specify the regular
expression pattern of the
standard output and
standard error output to
output the stdoutProperty
property, using a
maximum of 1,024
characters. Specify the
pattern in a PCRE-
compliant format.

If you use more than 1,024
characters, the 1,025th
and subsequent
characters are discarded.

Input false

stdoutProperty
2

Standard
Output
Property 2

The character string
extracted by the
stdoutPattern2 property is
output to this property.

Output false

stdoutPattern3

Standard
Output Pattern
3

Specify the regular
expression pattern of the
standard output and
standard error output to
output the stdoutProperty
property, using a
maximum of 1,024
characters. Specify the
pattern in a PCRE-
compliant format.

If you use more than 1,024
characters, the 1,025th
and subsequent
characters are discarded.

Input false

stdoutProperty
3

Standard
Output
Property 3

The character string
extracted by the
stdoutPattern3 property is
output to this property.

Output false

Appendix B: Description of built-in plug-ins

Hitachi Ops Center Automator Service Builder User Guide

195

Terminal Connect Plug-in

Property key

Property
name

Description

1/0 type Required

defaultReturnC
ode

Default Return
Code

Specify the value to return
as the return code when
standard output and
standard error output do
not match the regular
expression pattern
specified in the
returnCodePattern
property. Specify a value
in the range from 0O to 63.

The default is 0.

Input false

returnCodePatt
ern

Return Code
Pattern

Specify the regular
expression pattern for
standard output and
standard error output,
using a maximum of 1,024
characters. Specify the
pattern in a PCRE
compliant format. If
standard output and
standard error output
match the specified
pattern, the plug-in returns
the value specified in the
returnCode property.

Input false

returnCode

Return Code

Specify the return code to
be returned by the plug-in
when standard output and
standard error output
match the pattern set in
the returnCodePattern
property. You can specify a
value in the range from 0
to 63. If you omit this
property, the plug-in
returns the value specified
in the defaultReturnCode
property.

Input false

Usage example of stdoutPattern and stdoutProperty properties

By using the stdoutPattern property, you can extract the value output to standard output and
store it in the stdoutProperty property. The following figure shows the data flow when
specifying aaabbb(.*) in stdoutPattern1.

Appendix B: Description of built-in plug-ins

Hitachi Ops Center Automator Service Builder User Guide

196

Terminal Connect Plug-in

Following is a usage example of stdoutPattern and stdoutProperty properties:

stdoutPattern1 (Standard Output Pattern 1): aaabbb(.*)
stdoutProperty1 (Standard Qutput Property)

Standard output
aaabbbcce The value is assigned
according to the regular

ESewice property A: ccc <— | expression pattern.

As defined in stdoutPattern1, for the standard output aaabbbccc, the value after aaabbb (in
this case ccc) is extracted. The extracted value is stored in the stdoutProperty1 property.

Priority when plug-in properties are set in several locations

Information related to plug-in properties can also be set in a connection destination properties
file (connection destination-name.properties) orthe properties file

(config user.properties). When a value is set for a property in multiple locations, the
following priority applies:

Setting Location Property key Priority Default value

Telnet port Plug-in property | port 1 --
number

Connection telnet.port 2 --
destination
properties file
(connection-
destination-
name.propert

ies)

Properties file telnet.port.numb | 3 23
(config user |er
.properties)

SSH port Plug-in property | port 1 --
number

Connection ssh.port 2 --
destination
properties file
(connection-
destination-
name.propert

ies)

Properties file ssh.port.number | 3 22
(config user
.properties)

Appendix B: Description of built-in plug-ins

Hitachi Ops Center Automator Service Builder User Guide 197

Terminal Connect Plug-in

Setting

Location

Property key

Priority

Default value

Character set

charset 1

Plug-in property

name -
terminal.charset

Connection
destination
properties file
(connection-
destination-
name.propert

ies)

If no value is set in the plug-in property or the connection destination properties file
(connection-destination-name.properties), UTF-8 is set.

Usage examples of terminal connect plug-in
Example of judging Telnet authentication errors

The following describes an example of using plug-in properties to achieve the following
processing:

* Return 0 when login is successful.
* Return 1 when login fails.

* When login is successful, store the date and time of the last login and information about
the connection source in the stdoutProperty1 property.

The following table describes examples of the values you can specify in plug-in properties to
achieve this processing.

Property key Example of specified value | Meaning of specified value

If the contents of standard
output matches [prompt] or
Login incorrect, the plug-in
ends and determines the
return code.

promptPattern M[prompt\]|*Login incorrect

The character string
following Last login: in
standard output is stored in
the stdoutProperty1 property.

stdoutPattern1 ALast login:(.*)

If the contents of standard
output do not match the
value specified in the
returnCodePattern property,
0 is returned.

defaultReturnCode 0

Appendix B: Description of built-in plug-ins

Hitachi Ops Center Automator Service Builder User Guide 198

Terminal Connect Plug-in

Property key Example of specified value | Meaning of specified value

returnCodePattern A Login incorrect If the contents of standard
output match Login incorrect,
the plug-in returns the return
code specified in the
returnCode property.

returnCode 1 If the contents of standard
output matches the value
specified in the
returnCodePattern property,
the plug-in returns 1.

The following describes the function of a plug-in with the properties listed previously when it
encounters the following standard output.

Welcome to Server
login:user
password:

Login OK
Last login: Mon Mar 18 13:21:13 2013 from ServerA
[prompt]>

This is an example when the login is successful.

Because the contents of standard output match the value specified in the promptPattern
property, the terminal connect plug-in determines the return code. In this case, because the
standard output does not match the value specified in the returnCodePattern property, the
plug-in returns code (0), the value specified in the defaultReturnCode property.

The character string extracted by the stdoutPattern1 property (Mon Mar 18 13:21:13 2013
fromServerA) is stored in the stdoutProperty1 property.

Welcome to Server
login: user
Password:

Login incorrect

This is an example when the login fails.

Because the contents of standard output match the value specified in the promptPattern
property, the return code of the terminal connect plug-in is determined. In this case, because
the return code matches the value specified in the returnCodePattern property, the plug-in
returns code (1), the value specified in the returnCode property.

Appendix B: Description of built-in plug-ins

Hitachi Ops Center Automator Service Builder User Guide 199

Terminal Command Plug-in

Verifying whether an authentication error occurred when using SSH

When using SSH as the protocol, you can verify whether an authentication error has occurred
by reviewing the return code of the terminal connect plug-in.

Authentication errors are detected using the authentication information set in the Agentless
Remote Connections view or the authentication-related properties of the terminal connect
plug-in (account, password, and publicKeyAuthentication). This process does not use the
superuser password set in the Agentless Remote Connections view or the suPassword
property of the terminal connect plug-in.

If an authentication error is detected, the plug-in returns code 78. Note that the return code of
the plug-in will be 70 if destination is specified for the credentialType property and the
authentication information in the Agentless Remote Connections view is set incorrectly.

Example of connecting to a service such as an HTTP server that does not produce
standard output

The following describes an example of connecting to a service that does not produce
standard output. This example assumes that 80 is specified in the telnet.noStdout.port.list
property in the connection-destination properties file (connection-destination-
name.properties).

In this case, the values specified in the following properties are ignored, and the plug-in
returns code 0.

* credentialType

* account

= password

* suPassword

= publicKeyAuthentication

* keyboardInteractiveAuthentication
* charset

* lineEnd

* promptPattern

* readWaitTime

* stdoutPattern1 to stdoutPattern3
* defaultReturnCode

* returnCodePattern

= returnCode

Terminal Command Plug-in

The Terminal Command Plug-in runs commands on the destination host that was connected
to by using the Terminal Connect Plug-in.

Appendix B: Description of built-in plug-ins

Hitachi Ops Center Automator Service Builder User Guide 200

Terminal Command Plug-in

Function

This plug-in allows you to run a specified command on an operation target device that is
connected by using the terminal connect plug-in. The commands specified in the terminal
command plug-in are run with the privileges of the user authenticated by the terminal connect
plug-in. To run a command with administrator privileges, the terminal command plug-in must
run the command that elevates the user to administrator privileges.

Prerequisites

The protocol specified in the protocol property of the terminal connect plug-in is used to
communicate with the Ops Center Automator server.

A connection must have been established with the operation target device by a terminal
connect plug-in.

Cautionary notes

The plug-in waits for standard output for the length of time specified in the readWaitTime
property. If the time specified in readWaitTime elapses after output to standard output has
ceased, plug-in execution ends in an error. Make sure that the value of the readWaitTime
property is valid before using the plug-in. Any information output after the plug-in has
timed out is discarded.

If the value output to standard output matches the regular expression pattern specified in
the promptPattern property, the plug-in ends immediately.

If the command outputs information one page at a time, the system assumes that
standard output has ceased. If the time specified in the readWaitTime property then
passes, the plug-in ends with an error. Make sure that the command run by the terminal
command plug-in is not configured to output results one page at a time.

Echoed command lines are also output to standard output. When needed, configure the
command to not echo back.

If execution of a task is stopped during plug-in execution, the status of the task becomes
Failed or Completed when the processing of the terminal command plug-in has finished.
The session and token are then discarded. The status of steps and tasks after plug-in
execution has finished depends on the return code of the step and the condition for
executing subsequent steps. You can set Subsequent-step Execution Condition in the
Create Step dialog box or the Edit Step dialog box.

The standard output and standard error output of the terminal command plug-in is output
as the standard output of the Ops Center Automator step. The size of the standard output
and standard error output is the total number of bytes received by Ops Center Automator.
If the Telnet server or SSH server is configured to replace the linefeed character LF with
CR+LF, allow two bytes for each linefeed character. The results of processing whose total
standard output and standard error output exceeds 100 KB is outside the scope of product
support. Make sure that the total standard output and standard error output does not
exceed 100 KB.

Appendix B: Description of built-in plug-ins

Hitachi Ops Center Automator Service Builder User Guide 201

Terminal Command Plug-in

* If you intend to specify non-ASCII characters in the commandLine property, see General
Command Plug-in.

* When the Terminal Connect Plug-in version is less than 02.00.00, "patternMatch" is set in
"outputCondition". But, the default value of "outputCondition" is "always" in the case of
version 02.00.00. When you upgrade Terminal Connect Plug-in, keep this in mind.

Return codes

The Terminal Command Plug-in generates the following return codes:

Return Code

Description

0-63 If standard output and standard error output match the regular
expression pattern specified in the returnCodePattern property, the plug-
in returns the return code specified in the returnCode property. However,
if the output does not match the pattern, the plug-in returns the return
code specified in the defaultReturnCode property. Therefore, the
meaning of the return code depends on the service template that is
using the plug-in.

65 The connection with the Ops Center Automator server failed. For
example, the Ops Center Automator server might have stopped while
the plug-in was being run.

66 The following user is mapped to the Ops Center Automator user:
= A user who does not belong to the Administrators group.
= A user other than the built-in Administrator who belongs to the

Administrators group, in an environment with UAC enabled.

68 No information about the target job execution ID exists.

69 An environment variable of the task-processing engine cannot be
acquired.

70 The connection with the operation target device failed.

80 Task execution has stopped.

81 The plug-in was called in a status that is not valid.

82 The request message from the task-processing engine cannot be
correctly parsed.

83 The environment of the Ops Center Automator server is corrupted.

84 Information about the specified plug-in cannot be obtained.

86 The specified property value is not valid.

87 Standard output and standard error output have timed out.

Appendix B: Description of built-in plug-ins

Hitachi Ops Center Automator Service Builder User Guide 202

Terminal Command Plug-in

Return Code Description
88 The total standard output and standard error output has exceeded 100
KB.
127 Another error has occurred.
Property list

The properties available for the Terminal Command Plug-in.

Property Require
Property key name Description 1/0 type d
token Token Specify the value of the token Input true
property of the terminal connect
plug-in.
commandLine Command Line | Specify the absolute path of the | Input false

command or script to be run on
the operation target device,
using a maximum of 1024
characters. In the command
line, specify characters that can
be entered in command lines in
the OS of the Ops Center
Automator server and the OS of
the operation target device.
Special characters that
represent environment
variables in the command line
are not escaped. To handle a
special character as a
character string, escape the
character with a percent sign
(%) in Windows, and a
backslash (\) in Linux OS.

Appendix B: Description of built-in plug-ins

Hitachi Ops Center Automator Service Builder User Guide 203

Terminal Command Plug-in

Property key

Property
name

Description

1/0 type

Require
d

If you must enter the superuser
password in the command line
to give the user administrator
privileges, specify the
reserved.terminal.suPassword
reserved property. The
reserved.terminal.account,
reserved.terminal.password,
and
reserved.terminal.suPassword
reserved properties reference
token related authentication
information set for the terminal
connect plug-in. The specific
authentication information the
properties reference depends
on the setting of the
credentialType property of the
terminal connect plug-in.

= [f destination is specified for
the credentialType property,
the reserved properties
reference the authentication
information defined in the
connection destination.

= |f property is specified for
the credentialType property,
the reserved properties
reference the authentication
information specified in the
credentialType property of
the terminal connect plug-in.

charset

Character Set

Specify the character set to use
when writing to the standard
input of the operation target
device and reading from
standard output and standard
error output. Specify the same
character set as that of the user
who logs in to the operation
target. The names of character
sets are not case sensitive. You

Input

false

Appendix B: Description of built-in plug-ins

Hitachi Ops Center Automator Service Builder User Guide

204

Terminal Command Plug-in

Property Require
Property key name Description 1/0 type d
can specify the following
character sets:
= EUC-JP
" eucjp
* ibm-943C
* |S0O-8859-1
= MS932
* PCK
= Shift_JIS
= UTF-8
* windows-31j
lineEnd Newline When Telnet is specified in the | Input false

Character protocol property of the terminal
connect plug-in, specify the
newline character to append to
the values specified in the
account and password
properties. You can specify the
following:
* CR
* LF
* CRLF
To use 0x0D as the newline
character, specify CR. To use
O0x0A, specify LF, and to use
0x0DOA, specify CRLF.
The default value is CR.

Appendix B: Description of built-in plug-ins

Hitachi Ops Center Automator Service Builder User Guide 205

Terminal Command Plug-in

Property Require
Property key name Description 1/0 type d
promptPattern Prompt Pattern | Specify the regular expression | Input true

pattern to use to detect prompts
in standard output and standard
error output, using no more
than 1,024 characters. This
property is used to detect when
the operation target device is
ready to run commands after
the connection is established.
Specify the pattern in a PCRE-
compliant format. When the
output matches the specified
regular expression pattern, the
plug-in ends immediately. If the
output does not match the
pattern, the plug-in ends in an
error when the time set in the
readWaitTime property has
elapsed since the last output to
standard output or standard
error output.

readWaitTime Standard When logging in to an operation | Input false
Output Wait target device, specify how long
Time to wait after output to standard

output or standard error output
until the next output. Specify
the timeout time in a range from
1 to 86,400,000 (in
milliseconds).

The default value is 60000

outputCondition | Output Specifies a condition to be Input false
Condition output to the standard output
property 1-3. You can specify
the following values:

= always -- Outputs a null
character even if it does not
match the specified pattern.

= patternMatch -- Outputs only
when matching the standard
output pattern 1-3.

If there is no output in output
properties, mapped service
properties are also not updated.

Appendix B: Description of built-in plug-ins

Hitachi Ops Center Automator Service Builder User Guide 206

Terminal Command Plug-in

Property key

Property
name

Description

1/0 type

Require
d

The default value is always.

stdoutProperty1

Standard
Output
Property 1

The character string extracted
by the stdoutPattern1 property
is output to this property.

Output

false

stdoutPattern1

Standard
Output Pattern
1

Specify the regular expression
pattern of the standard output
to output to the stdoutProperty1
property, using a maximum of
1,024 characters. Specify the
regular expression pattern in a
PCRE-compliant format. If you
specify the key of a service
property in the stdoutProperty1
property but do not specify the
stdoutPattern1 property, the
entire standard output and
standard error output of the
command or script specified in
the commandLine property is
assigned to the service
property.

Input

false

stdoutProperty2

Standard
Output
Property 2

The character string extracted
by the stdoutPattern2 property
is output to this property.

Output

false

stdoutPattern2

Standard
Output Pattern
2

Specify the regular expression
pattern of the standard output
to output to the stdoutProperty2
property, using a maximum of
1,024 characters. Specify the
regular expression pattern in a
PCRE-compliant format. If you
specify the key of a service
property in the stdoutProperty2
property but do not specify the
stdoutPattern2 property, the
entire standard output and
standard error output of the
command or script specified in
the commandLine property is
assigned to the service
property.

Input

false

Appendix B: Description of built-in plug-ins

Hitachi Ops Center Automator Service Builder User Guide

207

Terminal Command Plug-in

Property key

Property
name

Description

1/0 type

Require
d

stdoutProperty3

Standard
Output
Property 3

The character string extracted
by the stdoutPattern3 property
is output to this property.

Output

false

stdoutPattern3

Standard
Output Pattern
3

Specify the regular expression
pattern of the standard output
to output to the stdoutProperty3
property, using a maximum of
1,024 characters. Specify the
regular expression pattern in a
PCRE-compliant format. If you
specify the key of a service
property in the stdoutProperty3
property but do not specify the
stdoutPattern3 property, the
entire standard output and
standard error output of the
command or script specified in
the commandLine property is
assigned to the service
property.

Input

false

defaultReturnCo
de

Default Return
Code

Specify the value to return as
the return code when standard
output and standard error
output do not match the regular
expression pattern specified in
the returnCodePattern property.
Specify a value in the range
from O to 63.

The default is 0.

Input

false

returnCodePatte
mn

Return Code
Pattern

Specify the regular expression
pattern for standard output and
standard error output, using a
maximum of 1,024 characters.
Specify the pattern in a
PCREcompliant format. If
standard output and standard
error output match the specified
pattern, the plug-in returns the
value specified in the
returnCode property.

Input

false

Appendix B: Description of built-in plug-ins

Hitachi Ops Center Automator Service Builder User Guide

208

Terminal Command Plug-in

Property Require
Property key name Description 1/0 type d
returnCode Return Code Specify the return code to be Input false

returned by the plug-in when
standard output and standard
error output match the pattern
set in the returnCodePattern
property. You can specify a
value in the range from 0 to 63.
If you omit this property, the
plug-in returns the value
specified in the
defaultReturnCode property.

Usage examples of terminal command plug-in

Example of terminating a terminal command plug-in with an error when an error is output to

standard output

The following table describes an example of a terminal command plug-in that ends with an
error when it acquires error-related information from standard output. Set the plug-in property

as follows:
Property Example of
key specified value Meaning of specified value

commandLin
e

configServer arg0

Runs the specified command or script.

arg1 arg2
promptPatte | M\[prompt\] If the contents of standard output matches [prompt],
rn the plug-in ends and determines the return value.
stdoutPatter | *Message:(.*) The character string following Message: in standard
n1 output is stored in the stdoutProperty1 property.
stdoutPatter | *Error:(.*) The character string following Error: in standard
n2 output is stored in the stdoutProperty2 property.
stdoutPatter | “ReturnCode:(.*) The character string following Returncode: in
n3 standard output is stored in the stdoutProperty3

property.

defaultRetur
nCode

value specified in the returnCodePattern property,
return code 0 is returned.

If the contents of standard output do not match the

Appendix B: Description of built-in plug-ins

Hitachi Ops Center Automator Service Builder User Guide

209

Terminal Command Plug-in

Property Example of
key specified value Meaning of specified value

returnCodeP | AError: If the contents of standard output match Error:, the

attern plug-in returns the return code specified in the
returnCode property.

returnCode |1 If the contents of standard output matches the value
specified in the returnCodePattern property, the plug-
in returns code 1.

The following describes the function of a plug-in with the previously listed properties when it
encounters the following standard output.

configServer arg0 arg1 arg2
Message:command failed
Error:Permission Denied
ReturnCode: 128

[prompt]>

The contents of standard output match the value specified in the promptPattern property, so
the terminal command plug-in determines which return code to return. Because standard
output matches the value specified in the returnCodePattern property, the plug-in returns
code (1), the value specified in the returnCode property.

The character strings extracted by the properties stdoutPattern1 to stdoutPattern3 are stored
as follows in the properties stdoutPrpoerty1 to stdoutProperty3:

* stdoutProperty1: command failed
* stdoutProperty2: Permission Denied

* stdoutProperty3: 128

Example of sending a GET request to an HTTP server

The following describes how to configure a plug-in that issues a request such as the following
one to an HTTP server and verifies the response.

GET findex.html HTTP/1.1

Host: ServerA

User-Agent: Automation Director
Accept-Charset: UTF-8

To issue a GET request to an HTTP server, specify each line of the request method and
request header in the commandLine property of a terminal command plug-in.

Because the last line of the request needs to be blank, you must run the terminal command
plug-in five times. The following table describes examples of the values to set in the
properties of each instance of the plug-in.

Appendix B: Description of built-in plug-ins

Hitachi Ops Center Automator Service Builder User Guide 210

Terminal Command Plug-in

Value specified in Value specified in Value specified in

Order of execution | the commandLine the lineEnd promptPattern
First GET /index.html CRLF >

HTTP/1.1
Second Host: ServerA CRLF .*
Third User-Agent: Ops CRLF .*

Center Automator
Fourth Accept-Charset: CRLF X

UTF-8
Fifth -- (adds a blank line. | CRLF >

Do not specify a

value)

Because HTTP server requests use [CR]+[LF] as delimit characters, specify CRLF for the
value specified in the lineEnd.

In the promptPattern property of the first to fourth terminal command plug-ins, you can
specify regular expression patterns that also match blank characters.

Because standard output continues after you run the terminal command plug-ins, specify a
regular expression that detects the end of standard output by the terminal command plug-ins
in the promptPattern property.

The following describes the function of a plug-in with the previously listed properties when it
encounters the following standard output:

HTTP/1.1 200 OK

Date: Mon, 18 Mar 2013 10:19:20 GMT
Server: Cosminexus HTTP Server
Last-Modified: Sun, 31 Jul 2005 05:27:52 GMT
ETag: "2d000000012d48-f-3fd2b60590600"
Accept-Ranges: bytes

Content-Length: 15

Content-Type: text/html

<HTML></HTML>

Because the contents of standard output match the value specified in the promptPattern
property, the terminal command plug-in determines the return code.

If standard output matches the value specified in the returnCodePattern property, the return
code specified in the returnCode property is returned as the return code of the plug-in.

If standard output does not match the value specified in the returnCodePattern property, the
plug-in returns the return code specified in the defaultReturnCode property.

Appendix B: Description of built-in plug-ins

Hitachi Ops Center Automator Service Builder User Guide 211

Terminal Disconnect Plug-in

Terminal Disconnect Plug-in

The Terminal Disconnect Plug-in ends a connection established with an operation target
device by a terminal connect plug-in.

Prerequisite

* Terminal disconnect plug-in uses the protocol specified in the protocol property of the
terminal connect plug-in to communicate with the Ops Center Automator server.

Cautionary notes

* |f a task is stopped while a plug-in is running, the status of the task changes to Failed or
Completed when the processing of the terminal disconnect plug-in finishes. The status of
steps and tasks after plug-in finishes depends on the return code of the step and the
condition for running subsequent steps. You can set Subsequent-step Execution Condition
in the Create Step dialog box or the Edit Step dialog box.

* |f you forcibly end a task while a plug-in is running, reading from standard output and
prompt detection are canceled and the task enters Failed status. The session and token
are then discarded. In this case, the return code of the step in the Task Details dialog box
is -1. The return code output to the task log depends on the timing of when the task was

forcibly ended.

Return codes

The Terminal Disconnect Plug-in generates the following return codes:

Return Code Description

0 The plug-in ended normally. The plug-in ends normally even if the
connection is already closed.

65 The connection with the Ops Center Automator server failed. For
example, the Ops Center Automator server might have stopped while
the plug-in was running.

66 The following user is mapped to the Ops Center Automator user:
* A user who does not belong to the Administrators group.
= A user other than the built-in Administrator who belongs to the

Administrators group, in an environment with UAC enabled.

68 No information about the target job execution ID exists.

69 An environment variable of the task-processing engine cannot be
acquired.

80 Task execution has stopped.

81 The plug-in was called in a status that is notvalid.

Appendix B: Description of built-in plug-ins

Hitachi Ops Center Automator Service Builder User Guide

212

Flow Plug-in

Return Code Description

82 The request message from the task-processing engine cannot be
correctly parsed.

83 The environment of the Ops Center Automator server is corrupted.
84 Information about the specified plug-in cannot be obtained.
86 The specified property value is not valid.
127 Another error has occurred.
Property list

The following properties are available for the Terminal Disconnect Plug-in:

Property Requi
key Property name Description 1/0 type red
token Token Specify the value of the token Input true
property of the terminal connect
plug-in.
Flow Plug-in

You can define a flow hierarchy using the Flow Plug-in.

The Flow Plug-in allows you to create hierarchical flows by defining flows within other flows.
You can define a maximum of 25 hierarchical levels, with the top-level flow being level 1.

The following figure shows how the flow is established.

Appendix B: Description of built-in plug-ins

Hitachi Ops Center Automator Service Builder User Guide 213

Flow Plug-in

Flow

Step A-1
Flow plug-in » StepB

T Em——

Flow
Step A-2
Flow plug-in . Step C
Flow
Step A-3
Flow plug-in > Step D
Flow

Cautionary notes

Return codes

If execution of a task is stopped while a plug-in is running, the status of the task changes
to Failed or Completed when the step running in the flow plug-in ends.

The return code of a flow plug-in is always 0. If a step within a hierarchy flow ends
abnormally, the plug-in returns code 0. The return code of the flow plug-in does not reflect
the return codes of the constituent steps of the hierarchy flow.

The Flow Plug-in generates the following return codes:

Property list

0: The plug-in ended normally.
1: A step in a lower execution flow ended with a warning.
2: A step in a lower execution flow ended abnormally.
Note: If the step execution of a lower flow fails, the task does not end at that

point. Determination of whether the task continues or stops is made by setting the
Next Step Condition of the flow plug-in step.

The following properties are available for the Flow Plug-in:

Appendix B: Description of built-in plug-ins

Hitachi Ops Center Automator Service Builder User Guide 214

Interval Plug-in

Property key Property name Description 1/0 type
errorStep Step in which The step ID that failed in one Output
error occurred lower flow is output in half-width

comma-separated.

returnValueOfError | Return value of The return value of the step that Output

Step step in which failed in one lower flow is output in
error occurred half-width comma separated
values.

Interval Plug-in

The Interval Plug-in controls the interval between running steps. The user specifies the wait
time for a process as the execution interval, and Ops Center Automator waits for the interval
to elapse before running the succeeding steps. By using an interval plug-in, you can run
steps at fixed intervals.

The following figure shows how the Interval Plug-in is used.

Flow

Step B
Step A > Interval plug-in » StepC

Step C is executed after the time period
specified in the plug-in has elapsed.

Cautionary notes

* The communication status and other factors might cause a discrepancy between the
actual wait time and the time specified by the plug-in.

* You cannot change the property values when you run the service. Set the values when
you create the flow.

* You can only specify literal characters in the input property. You cannot map the value of a
service property or reserved property.

* |f execution of a task is stopped during plug-in execution, the task enters Failed or
Completed status after the interval plug-in has finished processing.

Return codes

The Interval Plug-in generates the following return codes:

Appendix B: Description of built-in plug-ins

Hitachi Ops Center Automator Service Builder User Guide 215

Branch by ReturnCode Plug-in

Return Code Description

0 The plug-in ended normally. The plug-in ends normally even if the
connection has already been closed.

18 A task was forcibly ended during plug-in execution.

1to 17, 19 or higher | The plug-in ended abnormally. Use the hcmds64getlogs
command to acquire log information and identify the problem.

Property list

The following properties are available for the Interval Plug-in:

Property key Property name Description /0 type

interval R Interval This property Input
specifies how long to
wait before running
the next step, in the
range from 1 to
1,440 (minutes).

The default value is
ten minutes.

R: Required

Branch by ReturnCode Plug-in

The Branch by ReturnCode Plug-in branches the flow of processing based on the return
value of the previous step.

This plug-in allows you to select which step to run next based on the return code of the
preceding step.

A Branch by ReturnCode Plug-in connects to two branch destination steps: A succeeding
step, and a step that is only run when specific conditions are met. If the return code matches
the specified condition, Ops Center Automator runs the branch destination step and the
succeeding step, in that order. If the return code does not match the specified conditions, Ops
Center Automator runs the succeeding step only.

By using this plug-in together with a test value plug-in, you can select the steps in a flow
based on a character string.

The following figure shows how the Branch by ReturnCode Plug-in is used.

Appendix B: Description of built-in plug-ins

Hitachi Ops Center Automator Service Builder User Guide 216

Cautionary notes

Flow

Branch by ReturnCode Plug-in

Step B

Step A ——» —» StepD

(Preceding step)

Compares the value ofa
sem'cetpru perty or other
parameter against another
value. Ifthe values meet the
specified condition, the
automation software
continues with Step C and
then StepD.

Branch by
ReturnC ode:
Plug-in (Succeeding step)

Step C isrun only
ifthe specified condition
iz satisfied.

Step C Ifthe specified
condition is not met,
Step D is run without

(Branch destination step) running Step C.

* When a task is stopped or forcibly ended during plug-in execution, the task enters

Completed status after the Branch by ReturnCode Plug-in finishes processing.

* You cannot change the property values when you run the service. Set the values when
you create the flow.

* You can only specify literal characters in input properties. You cannot map the value of a
service property or reserved property.

* |f the Branch by ReturnCode Plug-in stops processing, use the hcmds64getlogs command
to acquire log information and identify the problem.

Return codes

The Branch by ReturnCode Plug-in generates the following return codes:

* 0 or higher: The plug-in ended normally. The return code of the preceding step of the
Branch by ReturnCode Plug-in is set as the return code.

Property list

The following properties are available for the Branch by ReturnCode Plug-in:

Property key | Property name Description 1/0 type
condition R Condition Specify the condition for the return code | Input

of the preceding step. You can choose

from the following conditions:

* ReturnCode=value1
The return code is equal to Value1.

* ReturnCode!=value1
The return code is not equal to
Value1.

* ReturnCode<value1
The return code is less than Value1.

Appendix B: Description of built-in plug-ins
Hitachi Ops Center Automator Service Builder User Guide 217

Branch by ReturnCode Plug-in

Property key

Property name

Description

1/0 type

ReturnCode>value1

The return code is greater than
Value1.

ReturnCode<=value1

The return code is less than or equal
to Value1.

ReturnCode>=value1

The return code is greater than or
equal to Value1.

ReturnCode>value1 AND
ReturnCode<value2

The return code is greater than
Value1 and less than Value2.

ReturnCode>=value1 AND
ReturnCode<value2

The return code is greater than or
equal to Value1, and less than Value2.

ReturnCode>value1 AND
ReturnCode<=value2

The return code is greater than
Value1, and less than or equal to
Value2.

ReturnCode>=value1 AND
ReturnCode<=value2

The return code is greater than or
equal to Value1, and less than or
equal to Value2.

ReturnCode<value1 OR
ReturnCode>value2

The return code is less than Value1,
or greater than Value2.

ReturnCode<=value1 OR
ReturnCode>value2

The return code is less than or equal
to Value1, or greater than Value2.

Appendix B: Description of built-in plug-ins

Hitachi Ops Center Automator Service Builder User Guide

218

Branch by ReturnCode Plug-in

Property key

Property name

Description

1/0 type

= ReturnCode<value1 OR
ReturnCode>=value2

The return code is less than Value1,
or greater than or equal to Value2.

= ReturnCode<=value1 OR
ReturnCode>=value2

The return code is less than or equal
to Value1, or greater than or equal to
Value2.

The default value is ReturnCode=value1.

value1 R

Value1

Specify a numerical value against which
to judge the return code, within the range
from 0 to 999. The value is mapped to
value1 in the condition property.

The default value is 0.

Input

value2

Value2

Specify a numerical value against which
to judge the return code, within the range
from 0 to 999. The value is mapped to
value2 in the condition property. This
value takes effect when value2 is
included in a condition property.

The default value is 0.

Input

R: Required

Example of a property specification

A Branch by ReturnCode Plug-in determines whether the return code is within a specified

range of values.

The following describes the range of valid condition values, using the following values of the
condition, value1, and value2 properties as examples.

A. The return code is 25 or greater and less than 75

condition (Condition): ReturnCode>=value1 AND ReturnCode<value2
value1 (Value1): 25
value2 (Value2): 75

B. The return code is less than 25, or 75 or higher

condition (Condition): ReturnCode<value1 OR ReturnCode>=value2

value1 (Value1): 25
value2 (Value2): 75

Appendix B: Description of built-in plug-ins

Hitachi Ops Center Automator Service Builder User Guide

219

Test Value Plug-in

The following figure shows the range of return codes that match each condition.

I | I 1
B A

B

25 < Return code < 75

Return code < 25

1
1
1
1
1
1
1
1
1
1
1
| 75 = Return code
1
I
1
7

% [———

5 100

Test Value Plug-in
The Test Value Plug-in compares service property values and returns 0 if the values match
the conditions.

The plug-in compares the value of a service property, the value of a reserved property, a
literal string, or any combination of these values against a specified value. If the condition is
met, the plug-in returns 0.

By using this plug-in together with a Branch by ReturnCode Plug-in, you can select the steps
in a flow based on a character string.

The following figure shows how the Test Value Plug-in is used.

Flow

Step B StepC

Step & — —> —® StepE
Test Value RBE'E"':'I.ICE;}
Plug-in b N
Plug-in (Succeeding step)

Compares the
valuepufa service Step D isrun only
property or other Ifthe values meet the ifthe spedified condition
parameter against specified condition, H tis fed

based on the retum ZaEnElEd

TIEEERZR code, the automation

software continues with
Step I and then Step E. StepD Ifthe specified
condition is not met,
Step E is run without
(Branch destination step) running Step D.

Cautionary notes

* |f a task is stopped while a plug-in is running, the task enters Completed status after the
Test Value Plug-in finishes processing.

Return codes

The Test Value Plug-in generates the following return codes:

Return Code Description

0 The value matched the condition. Alternatively, 0 is specified in the
defaultReturnCode property.

1 The value did not match the condition. Alternatively, 1 is specified in
the defaultReturnCode property.

Appendix B: Description of built-in plug-ins

Hitachi Ops Center Automator Service Builder User Guide 220

Test Value Plug-in

Return Code Description
63 Condition failed. 63 is specified in the defaultReturnCode property.
65 The connection with the Ops Center Automator server failed. For

example, the Ops Center Automator server might have stopped while
the plug-in was running.

66 The following user is mapped to the Ops Center Automator user:
* A user who does not belong to the Administrators group.

= A user other than the built-in Administrator who belongs to the
Administrators group, in an environment with UAC enabled.

68 No information about the target job execution ID exists.

69 An environment variable of the task-processing engine cannot be
acquired.

80 Task execution has stopped.

81 The plug-in was called in a status that is not valid.

82 The request message from the task-processing engine cannot be

correctly parsed.

83 The environment of the Ops Center Automator server is corrupted.
84 Information about the specified plug-in cannot be obtained.
86 The specified property value is not valid.
127 Another error has occurred.
Property list

The following properties are available for the Test Value Plug-in:

Appendix B: Description of built-in plug-ins

Hitachi Ops Center Automator Service Builder User Guide 221

Test Value Plug-in

Property key

Property name

Description

/10
type

condition R

Condition

Specify the judgment condition for the
valueX property. You can select from
the following conditions:

= valueX=value1

ValueX and Value1 are equal
(numerical comparison).

= valueX!=value1

ValueX and Value1 are not equal
(numerical comparison).

= valueX<value1

ValueX is less than Value1
(numerical comparison).

= valueX>value1

ValueX is greater than Value1
(numerical comparison).

= valueX<=value1

ValueX is less than or equal to
Value1 (numerical comparison).

= valueX>=value1

ValueX is greater than or equal to
Value1 (numerical comparison).

= valueX>value1 AND valueX<value2

ValueX is greater than Value1 and
less than Value2 (numerical
comparison)

= valueX>=value1 AND
valueX<value2

ValueX is greater than or equal to
Value1, and less than Value2
(numerical comparison).

= valueX>value1 AND
valueX<=value2

ValueX is greater than Value1, and
less than or equal to Value2
(numerical comparison).

Input

Appendix B: Description of built-in plug-ins

Hitachi Ops Center Automator Service Builder User Guide

222

Test Value Plug-in

Property key

Property name

Description

/10
type

valueX>=value1 AND
valueX<=value2

ValueX is greater than or equal to
Value1, and less than or equal to
Value2 (numerical comparison).

valueX<value1 OR valueX>value2

ValueX is less than Value1, or
greater than Value2(numerical
comparison).

valueX<=value1 OR valueX>value2

ValueX is less than or equal to
Value1, or greater than Value2
(numerical comparison).

valueX<value1 OR valueX>=value2

ValueX is less than Value1, or
greater than or equal to Value2
(numerical comparison).

valueX<=value1 OR
valueX>=value2

ValueX is less than or equal to
Value1, or greater than or equal to
Value2 (numerical comparison).

valueX equals value1

ValueX and Value1 are equal.
Values are case sensitive (character
string comparison).

valueX not equals value1

ValueX and Value1 are not equal.
Values are case sensitive (character
string comparison).

valueX contains value1

ValueX contains Value1. Values are
case sensitive (character string
comparison).

valueX not contains value1

ValueX does not contain Value1.
Values are case sensitive (character
string comparison).

Appendix B: Description of built-in plug-ins

Hitachi Ops Center Automator Service Builder User Guide

223

Test Value Plug-in

Property key

Property name

Description

/10
type

The default value is valueX=value1.

valueX R

ValueX

Specify a value as the basis for
comparison, using no more than 1,024
characters. You can use the following
formats individually or combined.

= ?dna_service-property-key? (when
referencing the value of a service
property)

= ?dna_reserved-property-key? (when
referencing the value of a reserved
property)

= literal-string

Input

value1

Value1

Specify the value against which to
compare the valueX property, using no
more than 1,024 characters. You can
use the following formats individually or
together.

= ?dna_service-property-key? (when
referencing the value of a service
property)

= 7?dna_reserved-property-key? (when
referencing the value of a reserved
property)

* literal-string

The value is mapped to value1 in the
condition property.

Input

value2

Value2

Specify the value against which to
compare the valueX property, using no
more than 1,024 characters. You can
use the following formats individually or
together.

= 7?dna_service-property-key? (when
referencing the value of a service
property)

* ?dna_reserved-property-key? (when
referencing the value of a reserved
property)

= literal-string

Input

Appendix B: Description of built-in plug-ins

Hitachi Ops Center Automator Service Builder User Guide

224

Test Value Plug-in

/10
Property key Property name Description type

The value is mapped to value2 in the
condition property.

The value in this property takes effect
when value2 is specified in the
condition property.

defaultReturnCode | Default Return This property specifies the value Input
R Code On Error | returned by the plug-in when a
numerical comparison is specified in
the condition property, and a value that
cannot be compared on a numerical
basis is specified in any of the valueX,
value1, and value2 properties.

=0
Specify 0 when using "The value

matched the judgment condition." as
the judgment result.

=1
Specify 1 when using "The value did

not match the judgment condition."
as the judgment result.

" 63

Specify 63 when using "Judgment
failed" as the judgment result to
make the step end abnormally.

The default value is 63.

R: Required

Example of property specification
A test value plug-in determines whether an input value is within a specified range of values.

The following describes the range of valid condition values, using the following values of the
condition, value1, and value2 properties as examples.

A. The input value is greater than or equal to 25 and less than 75
condition (Condition): ReturnCode>=value1 AND ReturnCode<value2
value1 (Value1): 25

value2 (Value2): 75

B. The input value is less than 25, or 75 or greater

condition (Condition): ReturnCode<value1 OR ReturnCode>=value2

Appendix B: Description of built-in plug-ins

Hitachi Ops Center Automator Service Builder User Guide 225

Abnormal-End Plug-in

value1 (Value1): 25
value2 (Value2): 75

The following figure shows the range of return codes that match each condition.

s T i I
B A i B

25 = ValueX <75

ValueX < 25 75 < ValueX

0 25 75 100

Abnormal-End Plug-in

The Abnormal-End Plug-in handles the abnormal termination of a running flow, task,
hierarchical flow, or repeatedly run flow.

The plug-in lets you end a running task abnormally.

By using this plug-in together with a Branch by ReturnCode Plug-in, you can also end a flow
abnormally when a judgment condition is met.

The following figure shows how the Abnormal-End Plug-in is used.

Flow

Step B
StepA ——» —» StepD
Branch by
ReturnCode Plug-in

specified condition
matches.

If the return code matches

the specified condition,

Step C is executed. The

task terminates abnormally. Step C

I Only executed if the

If the return code does not

match the specified conditon,

,;lbno_rmal-end Step D is executed. The task
ELES does not terminate abnarmally.

Cautionary notes

* If a task is stopped while running a plug-in, the task enters abnormal termination status
after the abnormal-end plug-in finishes processing.

* If you use an abnormal-end plug-in within a flow plug-in, the hierarchical flow and any
higher-level flows that feature flow plug-ins also end abnormally. Running tasks also end
abnormally, and the flow plug-in returns 0.

* When you use an abnormal-end plug-in in the context of a repeated execution plug-in, the
repeated execution plug-in returns 1 if the repeated processing ends abnormally one time.
If every instance of the repeated processing ends abnormally, the repeated execution
plug-in returns 2.

Appendix B: Description of built-in plug-ins

Hitachi Ops Center Automator Service Builder User Guide 226

Branch by Property Value Plug-in

Return codes
The Abnormal-End Plug-in generates the following return codes:
* 0: The plug-in ended normally (the step was ended abnormally).

= 80: Task execution has stopped.

Branch by Property Value Plug-in

The Branch by Property Value Plug-in branches the flow of processing based on service
property values.

The plug-in compares the value of a service property, the value of a reserved property, a
literal string, or any combination of these values against a specified value. The result of the
comparison determines which step Ops Center Automator runs next.

This Branch by Property Value Plug-in allows you to select which step to run next based on
the return code of the preceding step.

This plug-in connects to two branch destination steps: A succeeding step, and a step that is
only run when the judgment condition is met. If the input value matches the condition, Ops
Center Automator runs the branch destination step and the succeeding step, in that order. If
the input value does not match the conditions, Ops Center Automator runs the succeeding
step only.

This plug-in combines the functionality of a test value plug-in and a Branch by Returncode
plug-in.
The following figure shows how the Branch by Property Value Plug-in is used.

Flow

Step B

StepA ——» —* StepD

Branch by Value Plugin =

(Succeeding step)
Test Value Plug-in ----® Branch bv
ReturnCode
Plug4n

Step Cisrun only

Compares the value ofa ifthe spedified condition

service property or other iz satisfied.

parameter against another

value. Ifthe values meet the .

sped fied condition, the Step C Ifthe specified
automation software P condition is not met,
continues with Step C and Step D is run without

then StepD. (Branch destination step) running Step C.

Cautionary notes

* When you run this plug-in, the information output to the task log reflects the execution of
the test value plug-in. The Branch by Property Value Plug-in does not contribute to the
task log.

* If a task is stopped while the plug-in is running, the task enters Completed status after the
Branch by Property Value Plug-in finishes processing.

Return codes

The Branch by Property Value Plug-in generates the following return codes:

Appendix B: Description of built-in plug-ins

Hitachi Ops Center Automator Service Builder User Guide 227

Branch by Property Value Plug-in

Return Code

Description

The plug-in returns 0 when:
= The condition result is true.

* A numerical comparison is specified in the condition property, a
value that cannot be compared on a numerical basis is specified in
any of the valueX, value1, and value2 properties, and 0 is specified
in the defaultReturnCode property.

The plug-in returns 1 when:
* The condition result is false.

= A numerical comparison is specified in the condition property, a
value that cannot be compared on a numerical basis is specified in
any of the valueX, value1, and value2 properties, and 1 is specified
in the defaultReturnCode property.

80

The plug-in returns 80 when task execution is stopped.

Property list

The following properties are available for the Branch by Property Value Plug-in:

Property
Property key name Description 1/0 type
condition R Condition Specify the branch condition for the Input

valueX property. You can select from the
following conditions:

= valueX>=value1

ValueX is greater than or equal to
Value1 (numerical comparison).

= valueX>value1 AND valueX<value2

ValueX is greater than Value1 and less
than Value2 (numerical comparison).

= valueX>=value1 AND valueX<value2

ValueX is greater than or equal to
Value1, and less than Value2
(numerical comparison).

= valueX>value1 AND valueX<=value2

ValueX is greater than Value1, and
less than or equal to Value2
(numerical comparison).

Appendix B: Description of built-in plug-ins

Hitachi Ops Center Automator Service Builder User Guide 228

Branch by Property Value Plug-in

Property key

Property
name

Description

1/0 type

valueX>=value1 AND valueX<=value2

ValueX is greater than or equal to
Value1, and less than or equal to
Value2 (numerical comparison).

valueX<value1 OR valueX>value2

ValueX is less than Value1, or greater
than Value2 (numerical comparison).

valueX<=value1 OR valueX>value2

ValueX is less than or equal to Value1,
or greater than Value2 (numerical
comparison).

valueX<value1 OR valueX>=value2

ValueX is less than Value1, or greater
than or equal to Value2 (numerical
comparison).

valueX<=value1 OR valueX>=value2

ValueX is less than or equal to Value1,
or greater than or equal to Value2
(numerical comparison).

valueX equals value1

ValueX and Value1 are equal. This
judgment is case sensitive (character
string comparison).

valueX not equals value1

ValueX and Value1 are not equal. This
judgment is case sensitive (character
string comparison).

valueX contains value1

ValueX contains Value1. This
judgment is case sensitive (character
string comparison).

valueX not contains value1

ValueX does not contain Value1. This
judgment is case sensitive (character
string comparison).

The default value is valueX=value1.

Appendix B: Description of built-in plug-ins

Hitachi Ops Center Automator Service Builder User Guide

229

Branch by Property Value Plug-in

Property
Property key name Description 1/0 type

valueX R ValueX Specify a value as the basis for Input
comparison, using no more than 1,024
characters. You can use the following
formats individually or combined.

* ?dna_service-property-key? (when
referencing the value of a service
property)

* ?dna_reserved-property-key? (when
referencing the value of a reserved
property)

* literal-string

value1 Value1 Specify the value against which to Input
compare the valueX property, using no
more than 1,024 characters. You can use
the following formats individually or
together.

* ?dna_service-property-key? (when
referencing the value of a service
property)

* ?dna_reserved-property-key? (when
referencing the value of a reserved
property)

= literal-string

The value is mapped to value1 in the
condition property. The value in this
property takes effect when value1 is
specified in the condition property.

value?2 Value2 Specify the value against which to Input
compare the valueX property, using no
more than 1,024 characters. You can use
the following formats individually or
together.

* ?dna_service-property-key? (when
referencing the value of a service
property)

* ?dna_reserved-property-key? (when
referencing the value of a reserved
property)

* literal-string

Appendix B: Description of built-in plug-ins

Hitachi Ops Center Automator Service Builder User Guide 230

File Export Plug-in

Property
Property key name Description 1/0 type
The value is mapped to value2 in the
condition property.
The value in this property takes effect
when value? is specified in the condition
property.
defaultReturnCode | Default This property specifies the value returned | Input
R Return Code | by the plug-in when a numerical
On Error comparison is specified in the condition

property, and a value that cannot be
compared on a numerical basis is
specified in any of the valueX, value1,
and value2 properties.

=0
Specify 0 when using "The value

matched the judgment condition." as
the judgment result.

= 1
Specify 1 when using "The value did

not match the judgment condition." as
the judgment result.

* 63

Specify 63 for the step to end
abnormally when the judgment gives a
failed result.

The plug-in ends abnormally without
executing the branch destination step
or the succeeding step.

The default value is 63.

R: Required

File Export Plug-in

Exports the input content to a file.

The File Export Plug-in can output input values of any format to a file. You can use the
Apache Velocity Engine VTL (Velocity Template Language) http://velocity.apache.org/ to
specify the output format. If no format is specified, the input values are output as-is with no
formatting.

Appendix B: Description of built-in plug-ins

Hitachi Ops Center Automator Service Builder User Guide 231

http://velocity.apache.org/

File Export Plug-in

The File export plug-in specifies the full-path to the output file, exports the data, and
generates error messages if necessary

Prerequisites

* Name and location of the file to export.

* |f necessary, prepared template for output format.

Cautionary notes
* |f a file has the same name as an existing output file, the former will be overwritten.
= |f a folder has the same name as an existing output file, a write error occurs.

* Line feed codes in the export content and output template are included in the output file.

Return codes

The File Export Plug-in generates the following return codes.

Return Code Description
0 Ended normally.
1 The length of the output file path is longer than 256 characters.
2 A grammatical error has been detected in the VTL description.
3 This value is returned when an undefined attribute or method is

detected in the VTL description. Usually, this value is not returned
unless Velocity is run in strict mode. By default, strict mode is set to
false.

4 The resource file used for Velocity cannot be located. In most cases,
this value is not returned since the File Export Plug-in does not use
the resource file but is included to accommodate the exception that is
generated by the Velocity API.

5 An error occurred while writing the output file.
63 An error occurred during the processing of the plug-in.
80 Task execution has stopped.

Property list

The following properties are available for the File Export Plug-in:

Property key Property name Description /0O type
content R Content To Specifies the content to be Input
Export exported to the file.

Appendix B: Description of built-in plug-ins

Hitachi Ops Center Automator Service Builder User Guide 232

File Export Plug-in

Property key

Property name

Description

1/0 type

fileName R

Output File
Name

Specifies the name of the file
where the content is to be
exported. Empty strings are not
valid. The length of the full path
consisting of the output folder path
and the output file name cannot
exceed 256 characters.

Input

directoryPath

Output Directory
Path

Folder path where the output file is
to be created; an absolute or
relative path can be specified. If
you specify a relative path, the task
working folder (Automation/data/
task/[tasked]) is assumed as the
starting point for the path. If you do
not specify a folder path, the task
working folder (Automation/data/
task/[tasked]) is used. The length of
the full path consisting of the output
folder path and the output file name
cannot exceed 256 characters.

Input

template

Template For
The Output

Specifies a template with the VTL
description that defines the format
for the output content.

Input

charset

Character Set

Specifies the character set for the
output file.

Input

exportFilePath

Output File Path

Specifies the full path for the output
file to be exported.

Output

message

Message

Specifies the log for messages
generated during the processing of
the plug-in.

Output

R: Required

Input values with the output template

Any character can be specified in the input values. If the input values are JSON, the values
are JSON decoded as objects via the variable $root in the VTL description of the output
template, and the objects can be viewed. If the input values are not JSON, $root keeps the
input values as character strings. The description method of the output template complies
with the VTL syntax. Note that the variable $root described previously is a reserved variable

to which File Export Plug-in specifies values in advance. In addition, File Export Plug-in has a

utility for CSV output as a reserved variable $csv. The following table shows the reserved
variables that can be used in the VTL description for File Export Plug-in.

Appendix B: Description of built-in plug-ins

Hitachi Ops Center Automator Service Builder User Guide

233

JavaScript Plug-in

Variable name

Description

Gives the following
utility methods for
CSV output. These
can be used for the
VTL description
using Velocity's
ToolManager.

$root If an input value is JSON, the value is JSON decoded and stored as
an object. If the input value is not JSON, the value is stored as a
character string.

$Scsv $csv.value(String) -- Takes a single string as an argument; if a

character (such as a double quotation mark, comma, or line feed)
that needs an escape in CSV is included, enclose the value with
double quotation marks. If a double quotation mark is included in a
string value, the string in which the double quotation mark is escaped
(" -->"") is output. (Output process as a single cell of the CSV format)

$csv.values(String...) -- Takes multiple strings as arguments
(variable-length arguments) and outputs the strings into a single line
with the CSV format; the output format of a single cell is same as the
value(String) function described previously.

$csv.values(Collection<String>) -- Takes an array and outputs the
array into a single line with the CSV format; the output format of a
single cell is the same as the value(String) function described
previously.

JavaScript Plug-in

The JavaScript Plug-in Runs a specific JavaScript code. The plug-in can run any specified
JavaScript code as follows:

= To view any service property and plug-in property value.

* To pass the maximum of 10 arguments via plug-in properties to the JavaScript code.

* To keep the maximum of 10 values in plug-in output properties.

* To return a value and keep the return value in the output properties.

Return codes

The JavaScript Plug-in generates the following return codes:

Return Code Description
0 Ended normally.
1 Script has ended due to an error.
60 A JavaScript library read error has occurred.
61 A JavaScript compile error has occurred.

Appendix B: Description of built-in plug-ins

Hitachi Ops Center Automator Service Builder User Guide

234

JavaScript Plug-in

Return Code

Description

62 The JavaScript code is not properly formatted.
63 An error occurred during the processing of the plug-in.
80 Task execution has stopped.

Property list

The following properties are available for the JavaScript Plug-in:

Property
key

Property
name

Description

Default
value

110
type

Require
d

scriptBody

Script body

Specifies the JavaScript
code strings.

Input

true

importedScri
pt

Imported
script

Specifies methods and
constants (code string of
JavaScript) to be used in
common with other
JavaScript Plug-ins placed
on the same service
template.

The following items can be
used in the script of
importedScript:

= JS library: Same as the
JS library available at
scriptBody.

= Functions: print()
function. Same as the
print() function available
at scriptBody.

Input

false

arg0

Argument(0)

Specifies an argument to be
passed to the script.

Input

false

arg1

Argument(1)

Specifies an argument to be
passed to the script.

Input

false

arg2

Argument(2)

Specifies an argument to be
passed to the script.

Input

false

arg3

Argument(3)

Specifies an argument to be
passed to the script.

Input

false

Appendix B: Description of built-in plug-ins

Hitachi Ops Center Automator Service Builder User Guide

235

JavaScript Plug-in

Property
key

Property
name

Description

Default
value

/10
type

Require
d

arg4

Argument(4)

Specifies an argument to be
passed to the script.

Input

false

argb

Argument(5)

Specifies an argument to be
passed to the script.

Input

false

arg6

Argument(6)

Specifies an argument to be
passed to the script.

Input

false

arg7

Argument(7)

Specifies an argument to be
passed to the script.

Input

false

arg8

Argument(8)

Specifies an argument to be
passed to the script.

Input

false

arg9

Argument(9)

Specifies an argument to be
passed to the script.

Input

false

notify

Notification
flag

Specifies a non-empty
string if the script detects
something to notify; the
plug-in ends with a return
value of 1 if a non-empty
string is specified here.

Output

false

returnValue

Return value

The content of the object
returned from the function
of the specified script is
output as a character string.

Output

false

out0

Output(0)

A value set to the outO key
in the map of the second
argument in the user-
specified script is output.

Output

false

out1

Output(1)

A value set to the out1 key
in the map of the second
argument in the user-
specified script is output.

Output

false

out2

Output(2)

A value set to the out2 key
in the map of the second
argument in the user-
specified script is output.

Output

false

out3

Output(3)

A value set to the out3 key
in the map of the second
argument in the user-
specified script is output.

Output

false

Appendix B: Description of built-in plug-ins

Hitachi Ops Center Automator Service Builder User Guide

236

JavaScript Plug-in

Property Property
key hame

Default 110 Require
Description value type d

out4 Output(4)

A value set to the out4 key | -- Output | false
in the map of the second
argument in the user-

specified script is output.

outb Output(5)

A value set to the out5 key | -- Output | false
in the map of the second
argument in the user-

specified script is output.

out6 Output(6)

A value set to the out6 key | -- Output | false
in the map of the second
argument in the user-

specified script is output.

out7 Output(7)

A value set to the out7 key | -- Output | false
in the map of the second
argument in the user-

specified script is output.

out8 Output(8)

A value set to the out8 key | -- Output | false
in the map of the second
argument in the user-

specified script is output.

out9 Output(9)

A value set to the out9 key | -- Output | false
in the map of the second
argument in the user-

specified script is output.

You specify the plug-in input/output properties in the property list. Combinations of service
property values, reserved property values, and literal characters can be used for the input

properties.

JavaScript code specifiable for the JavaScript body

The following table shows the JavaScript codes that are allowable in the body of the script:

Character encoding

UTF-8

Available JS Library

underscore.js 1.8.3

auto_util-1.0.1.js (Bundled library of Ops
Center Automator)

Format

Must be an unnamed function (See the
sample code.)

Appendix B: Description of built-in plug-ins

Hitachi Ops Center Automator Service Builder User Guide 237

JavaScript Plug-in

Function call
interface

Argument

serviceProperti
es

Object type

Service input properties are
mapped. The values of the
service properties can be
viewed from the script. Note
that even if the script
updates, deletes, or adds
any of the values, the
modified values will not be
reflected in the service
properties after the script is

called.

pluginPropertie
S

Object type

Plug-in properties are
mapped. The values of the
plug-in properties can be
viewed from the script.

arg0 to arg9

Strings
specified in
the plug-in
properties
are directly
mapped.
Even the
strings
conform to
JSON, if the
script refers
to here, and
arguments
can be
obtained as
strings, not
objects.
When you do
not expect
the validation
JSON strings
to objects
described
afterward,
verify here.

Appendix B: Description of built-in plug-ins

Hitachi Ops Center Automator Service Builder User Guide

238

JavaScript Plug-in

notify If you specify
a value other
than a non-
empty string
to a member
specified for
notify in the
script, the
plug-in
finishes with
a return
value of 1
after calling.

outO to out9 | If you specify
values to
members
specified for
out0 to out9
in the script,
the values
are reflected
in the plug-in
output
properties of
Argument(0)
to
Argument(9)
after calling.
The values
are reflected
in the
processing
results of the
script, and
the results
will be used
for the next
step. (See
the sample
code.)

arg0 to arg9 Plug-in properties Argument(0) to
Argument(9) are mapped. (Optional)

Appendix B: Description of built-in plug-ins

Hitachi Ops Center Automator Service Builder User Guide 239

JavaScript Plug-in

If you specify JSON strings to the plug-in
properties, the strings can be obtained as
objects in the functions of the script.

= Strings that are enclosed with double
quotation marks are mapped as is.

= If strings are not enclosed, strings that
fail JSON validation are mapped as is.

Any objects can be returned from the script. After calling the
script, the return codes are extracted as JSON strings that are
then reflected in the plug-in output property Return value. The
values are reflected in the processing results of the script and
then used for the next step. (See the sample code.)

Return
code

functionalitie
s

print () By using the print() function in the script, you can output any strings to the
function task log. In this case, choose a log level by adding a specific prefix to the
beginning of the string. Note that alphabetical prefixes are case-sensitive.
(See the sample code.)
Prefix [Severe] Outputs as log level 0
[Information] Outputs as log level 10
[Fine] Outputs as log level 20
[Finer] Outputs as log level 30
[Debug] Outputs as log level 40
(No prefix) Same as the prefix [Information]
Other If an exception is thrown in the script or an unexpected exception occurs in

the script, the plug-in ends abnormally and shows the exception in the task
log.

When the script finishes properly, and when the values returned from the
script or the values specified in the plug-in output properties (outO to out9)
of the script contain null or undefined, those values are stored as null or
undefined.

auto util Library

The JavaScript plug-in supports the auto util library with the following features:

= Sends an http or https request to any destination.

* The setting values of Web Service Connection can be referred to as the connection

information.

The following table shows the auto util methods that are available:

Appendix B: Description of built-in plug-ins

Hitachi Ops Center Automator Service Builder User Guide

240

JavaScript Plug-in

Method Name Argument Return Value Description

sleep Specify the time None Sleep for the
to sleepin a specified time.
numeric type (in
milliseconds)

parsedson Specify a string JSON object Convert a string
representation of to a JSON obiject.
JSON by string
type.

stringifyJson Specify any String Convert a JSON

JSON object.

representation of
JSON

object to a string.

base64.encode Specify a string to | String encoded to | Encode into
be converted to BASEG4 BASEG6G4.
BASEG64.

base64.decode Specify a String decoded Decode from

BASEG64 string.

from BASEG64

BASEG4.

http.call JSON obiject of JSON object of Perform http or
the request the response https request and
return a response.
http.toRawHeader JSON obiject of Header string Return the header

the header

in the form of
string. To the
argument, specify
the JSON object
where the key
and its value is
set.

http.defaultErrorHandler

Error

JSON object of
the request

JSON object of
the response

None

Throw HttpError
instance.

Appendix B: Description of built-in plug-ins

Hitachi Ops Center Automator Service Builder User Guide

241

JavaScript Plug-in

Method Name Argument Return Value Description

http.handleCall

httpCall method None

JSON object of
the request

Method to call
when the http call
is successful.

Method to call
when the result
status code is 200
or more and less
than 400.

Method to call
when an error
occurs before the
http call.

Call the httpCall
method of the first
argument by
specifying the
request of the
second argument.
If the response of
the result is 200
or more and less
than 400, call the
third argument,
and in the case of
other response
codes, call the
fourth argument.

The following members are available for the JSON object of the request:

Member

Type

Description

requestUrl

String

[If not using Web Service
Connection] Specify the
request URL starting with
http or https. [If using Web
Service Connection] Specify
the part from the "/" after the
host name of the request
URL to the en. Example: In
the case of http://
host:port/folder,
specify "/Folder".

requestMethod

String

HTTP request method.
Specify the following value
as the string.

« GET
* POST
* PUT

Appendix B: Description of built-in plug-ins

Hitachi Ops Center Automator Service Builder User Guide

242

JavaScript Plug-in

Member Type Description

* DELETE

= PATCH (Supported only
when "none" or "basic" is
specified for
authScheme.)

requestHeaders String Request header. Assume
that the return value of the
http.toRawHeader method is
set. [When using Web
Service Connection] The
following values can be used
as pad characters for user ID
and password. - $
{connection.username} - $
{connection.password}

requestBody String Request body

authScheme String Specify one of the following
values:

= none
= basic
= digest

= negotiate

productName String Specify Web Service
Connection category. Make
sure to specify if using Web
Service Connection.

connectionName String Specify Web Service
Connection name. Make
sure to specify if using Web
Service Connection.

userName String Specify the user name to
authenticate to the
destination. Do not specify if
using Web Service
Connection.

password String Specify the password to
authenticate to the
destination.

Appendix B: Description of built-in plug-ins

Hitachi Ops Center Automator Service Builder User Guide 243

JavaScript Plug-in

Member

Type

Description

useProxy

boolean

Specify whether to use a
proxy (true/false).

proxyHost

String

Specify the host name or IP
address of the proxy server.

proxyPort

int

Specify the port number of
the proxy server.

proxyAuthScheme

String

If you specify "true" for
useProxy, specify one of the
following values:

" none
= basic

= digest

proxyUserName

String

Specify the user name if the
authentication is required at
the proxy server.

proxyPassword

String

Specify the password if the
authentication is required at
the proxy server.

The following table shows the allowable response members:

Member Type Description
responseHeaders String Response header
responseStatusCode int Response code
responseStatusMessage String Response message
responseBody String Response body

Sample code (scriptBody)

JavaScript sample code that can be specified in the plug-in property JavaScript body is as

follows:

function (serviceProperties, pluginProperties, arg0, argl, arg2) {
var obj = new Object();

print (" [Debug] Function begin.");

obj.meml = arg0;

obj.mem2 = argl;

Appendix B: Description of built-in plug-ins

Hitachi Ops Center Automator Service Builder User Guide 244

JavaScript Plug-in

if (arg2 == "") {
pluginProperties["notify"] = 999;
pluginProperties["outl"] = "NOTE!: The arg2 is EMPTY.";
} else {

obj.mem3 = arg2;
obj.status = "success";

pluginProperties["outl"] = "Finished successfully.";

print (" [Debug] Function end.");

return obj;

As described in the previous table, there are two ways of obtaining arg0, arg1,... where each
can provide a different value. For pluginProperties, the arguments are obtained as a string
but when obtained from the argument arg0, arg1,..., the evaluated value can be obtained
from JavaScript. The example that shows the difference between the case of obtaining the
input property of the plug-in from pluginProperties and the case of obtaining it from arg0,
arg1,... is as follows.

Suppose that the following sample code is run by specifying 3 to arg0 and 5 to arg1.

function (serviceProperties, pluginProperties, arg0, argl) {
pluginProperties["out0"] = pluginProperties["arg0"] + pluginProperties["argl"];

pluginProperties["outl"] = arg0 + argl;

When this sample code is run, "35" is set to out0, and "8.0" is set to out1. From
pluginProperties, the arguments are handled as strings of "3" and "5" respectively, while the
"+" symbol is handled as the string concatenation. In addition, for arg0 and arg1, they
become 3.0 and 5.0 respectively, while the "+" symbol is handled as the addition function.

The following sample shows how to get the pool list from the Platform REST API server
included in the storage system by referring to the connection information provided by Web
Service Connection, and sets to the output property out 0. As a prerequisite, the Web
Service Connection whose category is StorageSystem" and whose name is "storage1" must
already be registered.

function getPools (productname, connectionname) ({
var respBody = null;
var request = {
requestMethod: 'GET',
requestUrl:'/ConfigurationManager/vl/objects/pools',
requestHeaders:auto.util.http.toRawHeader ({
'Accept':'application/json',
'Accept-Language':'en',
'Content-Type':'application/json',
1)y

authScheme: 'basic’',

Appendix B: Description of built-in plug-ins

Hitachi Ops Center Automator Service Builder User Guide 245

JavaScript Plug-in

connectionName: connectionname,
productName: productname,
bi
auto.util.http.handleCall (auto.util.http.call, request,
function (resp, req) {
respBody = resp.responseBody;
}, function(resp, req) {
auto.util.http.defaultErrorHandler (null, req, resp);
}, function(err, req) {

auto.util.http.defaultErrorHandler (err, req);

)i
return JSON.parse (respBody) ;
}
function fn(serviceProperties, pluginProperties, arg0, argl, arg2, arg3, argd4, argh,
arg6, arg7, arg8, arg9) {
var data = getPools('StorageSystem', 'storagel') .data;
var poolList = [];
__.each(data, function(d) {
poolList.push ({
poolId: d.poolld,
poolStatus: d.poolStatus,
availableVolumeCapacity: d.availableVolumeCapacity
});
1)
pluginProperties.out0 = JSON.stringify(poolList, null, 2);

The following sample shows how to get the pool list from the Platform REST API server
included in the storage system without referring to the connection information of Web Service
Connection, and sets to the output property out0. As a prerequisite, the host name of
Platform REST API server must be "host", the logon user name is "user", and the password is
"password".

function getPools () {
var respBody = null;
var request = {
requestMethod: 'GET',
requestUrl: 'https://host/ConfigurationManager/vl/objects/pools’,
requestHeaders:auto.util.http.toRawHeader ({
'Accept':'application/json',
'Accept-Language':'en',
'Content-Type':'application/json',
1),
authScheme: 'basic’',
userName: "user',
password: 'password',
useProxy: 'false'
bi
auto.util.http.handleCall (auto.util.http.call, request,

Appendix B: Description of built-in plug-ins

Hitachi Ops Center Automator Service Builder User Guide 246

JavaScript Plug-in

function(resp, req) {
respBody = resp.responseBody;
}, function(resp, req) {
auto.util.http.defaultErrorHandler (null, req, resp);
}, function(err, req) {

auto.util.http.defaultErrorHandler (err, req);

) i
return JSON.parse (respBody) ;
}
function fn(serviceProperties, pluginProperties, arg0, argl, arg2, arg3, arg4, argb,
arg6, arg7, arg8, arg9) {
var data = getPools () .data;
var poolList = [];
_.each(data, function (d) {
poolList.push ({
poolId: d.poolld,
poolStatus: d.poolStatus,
availableVolumeCapacity: d.availableVolumeCapacity
b7
b7
pluginProperties.out0 = JSON.stringify(poolList, null, 2);

Sample code (scriptBody/importedScript)

JavaScript sample code that can be specified in the plug-in property scriptBody/
importedScript is as follows:

function fn(serviceProperties, pluginProperties, arg0, argl, arg2, arg3, argd4, argh,

arg6, arg’7, arg8, arg9) {

hoge (CNST) ;

var CNST = "hoge";

function hoge (a) {

print(a + " from common js!");

Appendix B: Description of built-in plug-ins

Hitachi Ops Center Automator Service Builder User Guide 247

JavaScript Plug-in for Configuration Manager REST API

JavaScript Plug-in for Configuration Manager REST API
The JavaScript Plug-in for Configuration Manager REST API runs any script written in
JavaScript and includes methods for accessing Configuration Manager REST API.

The relationship between the specification of Configuration Manager REST API and the
specification of methods and data models that are available in the script of this plug-in, is as
follows:

* The path name of each API, the method with the name where the "/"(slash) separator is
replaced with a "."(dot) separator, is provided through the plug-in.

* The HTTP Method can be specified such as "~.get(...", "~.post(..." at the end of the
method name.

* The variables and the query parameters in the API path can be specified as the
arguments of the method.

* The Request Body can be given to the arguments as the relevant data model.

When the HTTP status code of the Configuration Manager REST API is 503, the retry is
performed with the following retry count and interval:

* Retry count: 130
* Retry interval: 30 seconds

The maximum number of concurrent plug-in runs is 30. Even if you specify a value more than
30 for plugin.threadPoolSize in config_user.properties, the number of concurrent plug-in runs
is limited to 30.

If the specified value for plugin.threadPoolSize is less than or equal to 30, the maximum
number of concurrent plug-in runs will be the specified value for plugin.threadPoolSize.
Return codes

The JavaScript Plug-in for Configuration Manager REST API generates the following return

codes.
Return Code Description
0 Ended normally.
1 Script has ended due to an error.
60 A JavaScript library read error has occurred.
61 A JavaScript compile error has occurred.
62 The JavaScript code is not properly formatted.
63 An error occurred during the processing of the plug-in.
80 Task execution has stopped.

Appendix B: Description of built-in plug-ins

Hitachi Ops Center Automator Service Builder User Guide 248

Property list

JavaScript Plug-in for Configuration Manager REST API

The following properties are available for the JavaScript Plug-in for Configuration Manager

REST API:

Property key

Property name

Description

1/0 type

webServiceConnectionCate
gory

Web Service
Connection
Category

Specify the Web Service
Connection category. By
the combination of this
property and Web
Service Connection
Name, Web Service
Connection can be
identified uniquely.

Input

webServiceConnectionNam
e

Web Service
Connection Name

Specify the Web Service
Connection name. If this
property and Web
Service Connection
Category are specified,
Web Service Connections
registered into Ops
Center Automator are
searched and if there is
matching one, its URL
and Proxy are used at the
time of API call.

Input

baseUrl

Base URL

Specify the base URL at
the time of API call. - The
input format is
"<protocol>://
<host>:<port>/". - The
subsequent resource
path and the query
parameters cannot be
specified. See details on
WebServiceConnection.

Input

Appendix B: Description of built-in plug-ins

Hitachi Ops Center Automator Service Builder User Guide

249

JavaScript Plug-in for Configuration Manager REST API

Property key

Property name

Description

1/0 type

requestHeaders

Request Headers

Specify the HTTP request
headers appended at
each API call. Main
usage is the various
authentications. Specify
as the following format
(The leading and trailing
white spaces of the
header name and the
value are ignored.): <
Header-name-of-Header1
> : < Value-of-Header1 >
\n < Header-name-of-
Header2 > : < Value-of-
Header2 > \n You can
specify any additional
headers. However, since
the header required to
connect with
Configuration Manager
REST API (such as
credential) is
automatically appended,
basically it is not
necessary to specify the
header here.

Input

webUsername

Server
Authentication
Basic User Name

Specify the user name
used for server
authentication.

Input

webPassword

Server
Authentication
Basic Password

Specify the password
used for server
authentication.

Input

useProxy

Use Proxy Server

Set this to true when a
proxy connection is
required.

Input

ApiKey

Server
Authentication API
Key

Specify the API key for
authentication (used
together with AP| Key
Prefix)

Input

Appendix B: Description of built-in plug-ins

Hitachi Ops Center Automator Service Builder User Guide

250

JavaScript Plug-in for Configuration Manager REST API

Property key

Property name

Description

1/0 type

ApiKeyPrefix

Server
Authentication API
Key Prefix

Specify the API Key
Prefix for authentication
(used together with API
Key). The following part
of HTTP header.
Authorization: [API Key
Prefix] [API Key].

Input

proxyHostname

Proxy Hostname

Specify the proxy host
name or IP address.

Input

proxyPort

Proxy Port Number

Specify the proxy port
number.

Input

proxyAuth

Proxy Server
Authentication
Scheme

Specifies the proxy

authentication type. The
following authentication
functions are supported:

= Basic authentication

= Digest authentication

Input

proxyUsername

Proxy Username

Specify the user name
used for proxy
authentication.

Input

proxyPassword

Proxy Password

Specify the password
used for proxy
authentication.

Input

scriptBody

Script body

Specifies the JavaScript
code strings.

This property is required.

Input

importedScript

Imported script

Specifies methods and
constants (code string of
JavaScript) to be used in
common with other
JavaScript Plug-in for
Configuration Manager
REST API plug-ins
placed on the same
service template.

Input

Appendix B: Description of built-in plug-ins

Hitachi Ops Center Automator Service Builder User Guide

251

JavaScript Plug-in for Configuration Manager REST API

Property key

Property name

Description

1/0 type

The following items can
be used in the script of
importedScript:

= JS library: Same as
the JS library available
at scriptBody.

* Functions: print()
function. Same as the
print() function
available at
scriptBody.

arg0

Argument(0)

Specifies an argument to
be passed to the script.

Input

arg1

Argument(1)

Specifies an argument to
be passed to the script.

Input

arg2

Argument(2)

Specifies an argument to
be passed to the script.

Input

arg3

Argument(3)

Specifies an argument to
be passed to the script.

Input

arg4

Argument(4)

Specifies an argument to
be passed to the script.

Input

argb

Argument(5)

Specifies an argument to
be passed to the script.

Input

arg6

Argument(6)

Specifies an argument to
be passed to the script.

Input

arg7

Argument(7)

Specifies an argument to
be passed to the script.

Input

arg8

Argument(8)

Specifies an argument to
be passed to the script.

Input

arg9

Argument(9)

Specifies an argument to
be passed to the script.

Input

notify

Notification flag

Specifies a non-empty
string if the script detects
something to notify; the
plug-in ends with a return
value of 1 if a non-empty
string was specified here.

Output

Appendix B: Description of built-in plug-ins

Hitachi Ops Center Automator Service Builder User Guide

252

JavaScript Plug-in for Configuration Manager REST API

Property key Property name Description 1/0 type

returnValue Return value The content of the object | Output
returned from the function
of the specified script is
output as a character
string.

out0 Output(0) A value set to the out0 Output
key in the map of the
second argument in the
user-specified script is
output.

out1 Output(1) A value set to the out1 Output
key in the map of the
second argument in the
user-specified script is
output.

out2 Output(2) A value set to the out2 Output
key in the map of the
second argument in the
user-specified script is
output.

out3 Output(3) A value set to the Output
out3key in the map of the
second argument in the
user-specified script is
output.

out4 Output(4) A value set to the out4 Output
key in the map of the
second argument in the
user-specified script is
output.

outs Output(5) A value set to the out5 Output
key in the map of the
second argument in the
user-specified script is
output.

out6 Output(6) A value set to the out6 Output
key in the map of the
second argument in the
user-specified script is
output.

Appendix B: Description of built-in plug-ins

Hitachi Ops Center Automator Service Builder User Guide 253

JavaScript Plug-in for Configuration Manager REST API

Property key Property name Description 1/0 type

out7 Output(7) A value set to the out7 Output
key in the map of the
second argument in the
user-specified script is
output.

out8 Output(8) A value set to the out8 Output
key in the map of the
second argument in the
user-specified script is
output.

out9 Output(9) A value set to the out9 Output
key in the map of the
second argument in the
user-specified script is
output.

The setting value of Web Service Connection can be referred to as a value of the input
property of the Plug-in. In this case, the corresponding input property is overwritten by the
setting value of the Web Service Connection. Whether to refer to the setting value of Web
Service Connection is determined by the input value of webServiceConnectionCategory and
webServiceConnectionName. When referring to the setting value of WebServiceConnection,
the URL (property name: baseUrl) is ignored.

You specify the plug-in input/output properties in the property list. Combinations of service
property values, reserved property values, and literal characters can be used for the input
properties.

Input Value of Input Value of
webServiceConnectionCat | webServiceConnectionNa
egory me Behavior of the plug-in

Exist Exist See the value of Web
Service Connection. If no
matching Web Service
Connection is found, it
becomes a run-time error.

Exist Not exist Error (tried to refer to Web
Service Connection, but did
not find the matching one).

Not exist Exist Error (tried to refer to Web
Service Connection, but did
not find the matching one).

Appendix B: Description of built-in plug-ins

Hitachi Ops Center Automator Service Builder User Guide 254

JavaScript Plug-in for Configuration Manager REST API

Input Value of Input Value of
webServiceConnectionCat | webServiceConnectionNa
egory me Behavior of the plug-in
Not exist Not exist Do not refer to the value of
Web Service Connection.

JavaScript code specifiable for the JavaScript body

The following table shows the JavaScript codes that are allowable in the body of the script:

Character encoding UTF-8

Available JS Library underscore.js 1.8.3
auto_util-1.0.1.js (Bundled library of Ops
Center Automator)

Format Must be an unnamed function (See the

sample code.)

Function call | Argument | serviceProperti | Object type Service properties are
interface es mapped. The values of the
service properties can be
viewed from the script. Note
that even if the script
updates, deletes, or adds
any of the values, the
modified values will not be
reflected in the service
properties after the script is
called.

pluginPropertie | Object type Plug-in properties are

s mapped. The values of the
plug-in properties can be
viewed from the script.

Appendix B: Description of built-in plug-ins

Hitachi Ops Center Automator Service Builder User Guide 255

JavaScript Plug-in for Configuration Manager REST API

arg0 to arg9

Strings
specified in
the plug-in
properties
are directly
mapped.
Even the
strings
conform to
JSON, if the
script refers
to here, and
arguments
can be
obtained as
strings, not
objects.
When you do
not expect
the validation
from JSON
strings to
objects
described
afterwards,
verify here.

notify

If you specify
a value other
than a non-
empty string
to a member
specified for
notify in the
script, the
plug-in
finishes with
areturn
value of 1
after calling.

Appendix B: Description of built-in plug-ins

Hitachi Ops Center Automator Service Builder User Guide

256

JavaScript Plug-in for Configuration Manager REST API

outO to out9 | If you specify
values to
members
specified for
outO to out9
in the script,
the values
are reflected
in the plug-in
output
properties of
Argument(0)
to
Argument(9)
after calling.
The values
are reflected
in the
processing
results of the
script, and
the results
will be used
for the next
step. (See
the sample
code.)

arg0 to arg9 Plug-in properties Argument(0) to
Argument(9) are mapped. (Optional)

If you specify JSON strings to the plug-in
properties, the strings can be obtained as
objects in the functions of the script.

= Strings that are enclosed with double
quotation marks are mapped as is.

= If strings are not enclosed, strings that
fail JSON validation are mapped as is.

Return Any objects can be returned from the script. After calling the
code script, the return codes are extracted as JSON strings that are
then reflected in the plug-in output property Return value. The
values are reflected in the processing results of the script and
then used for the next step. (See the sample code.)

print () By using the print() function in the script, you can output any strings to the
function task log. In this case, choose a log level by adding a specific prefix to the
beginning of the string. Note that alphabetical prefixes are case-sensitive.
(See the sample code.)

Appendix B: Description of built-in plug-ins

Hitachi Ops Center Automator Service Builder User Guide 257

JavaScript Plug-in for Configuration Manager REST API

Prefix [Severe] Outputs as log level 0
[Information] Outputs as log level 10
[Fine] Outputs as log level 20
[Finer] Outputs as log level 30
[Debug] Outputs as log level 40
(No prefix) Same as the prefix [Information]
Other If an exception is thrown in the script or an unexpected exception occurs in

functionalitie | the script, the plug-in ends abnormally and shows the exception in the task
S log.

When the script finishes properly, and when the values returned from the
script or the values specified in the plug-in output properties (out0 to out9)
of the script contain null or undefined, those values are stored as null or
undefined.

Sample code (scriptBody)

The following examples show the sample code of Configuration Manager REST API (HTTP)
and the JavaScript that can be specified in the plug-in property JavaScript body:

Obtain Pool Information

[In the case of Configuration Manager REST API (HTTP)]

HTTP Method: GET

Request URL: ../ConfigurationManager/vl/objects/storages/<storageDevicelD>/pools?
poolType=<poolType>

Request Body: None

[In the case of JavaScript Plug-in for Configuration Manager REST API]

var client = new api.ObjectsApil();

var arg = new argDef.ObjectsApi.vl.objects.storages.storageDeviceID.pools.get();
arg.setStorageDevicelD (<storageDeviceID>);

arg.setDetailInfoType (<detailInfoType>) ;

arg.setPoolType (<poolType>) ;

arg.setResponseMaxWait (<responseMaxWait>) ;

arg.setResponseJobStatus (<responsedJobStatus>) ;

client.vl.objects.storages.storageDevicelID.pools.get (arg);

Register the Pool information

[In the case of Configuration Manager REST API (HTTP)]

HTTP Method: POST

Request URL: ../ConfigurationManager/vl/objects/storages/<storageDeviceID>/pools
Request Body: { "poolId": 76, "poolName": "pooll", "ldevIds": [405], "poolType":

Appendix B: Description of built-in plug-ins

Hitachi Ops Center Automator Service Builder User Guide 258

JavaScript Plug-in for Configuration Manager REST API

"HDP" }

[In the case of JavaScript Plug-in for Configuration Manager REST API]
var regBody = {

poolId:76,

poolName: "pooll",

ldevIds: [405],

poolType:"HDP"
bi

var client = new api.ObjectsApi();

var arg = new argDef.ObjectsApi.vl.objects.storages.storageDevicelID.pools.post () ;
arg.setStorageDevicelD (<storageDevicelID>);

arg.setRequestBody (regBody) ;

arg.setResponseMaxWait (<responseMaxWait>) ;

arg.setResponseJobStatus (<responsedJobStatus>) ;

client.vl.objects.storages.storageDeviceID.pools.post (arqg) ;

Sample code (scriptBody/importedScript)

The following examples show the sample code of Configuration Manager REST API that can
be specified in the plug-in property scriptBody/importedScript:

function fn(serviceProperties, pluginProperties, arg0, argl, arg2, arg3, argd4, arg5,

arg6, arg’7, arg8, arg9) {

hoge (CNST) ;

var CNST = "hoge";

function hoge (a) {

print(a + " from common js!");

Appendix B: Description of built-in plug-ins

Hitachi Ops Center Automator Service Builder User Guide 259

Python Plug-in

Python Plug-in

The Python plug-in is a component that runs Python scripts on the Ops Center Automator
host. The Python interpreter must be installed on the Ops Center Automator host before it
can be used, because the Python interpreter is not installed by Ops Center Automator. To
use this plug-in in a cluster environment, the Python interpreter must be installed on both the
active and standby systems. The Python plug-in does not support a virtual Python

environment.

Supported versions of Python

Version 3.x series

Return codes

The Python Plug-in generates the following return codes:

Return Code Description
0 Ended normally.
1 Python interpreter failed.
2 Python script failed.
3 Python script timed out.
80 Task has stopped.
127 Another error has occurred.
Property list

The following properties are available for the Python Plug-in:

Property Property Default /10
key name Description value type | Required
pythoninterp | Python Specifies the path to the python | Input true
reterPath interpreter Python interpreter that
path executes the script
scriptBody Script body Specifies the Python code -- Input | true
strings.
Appendix B: Description of built-in plug-ins
Hitachi Ops Center Automator Service Builder User Guide 260

Python Plug-in

Property
key

Property
name

Description

Default
value

/10
type

Required

importedScri
pt

Imported
script

Specifies methods and
constants (code string of
Python) to be used in
common with other Python
Plug-ins placed on the
same service template.

The following items can be
used in the script of
importedScript:

* Functions: log() function.
Same as the log()
function available at
scriptBody.

= Environment variables:
Same as the
environment variables
available at scriptBody.

Input

false

webService
ConnectionC
ategory

Web Service
Connection
Category

Specify the Web Service
Connection category.

Input

false

webService
ConnectionN
ame

Web Service
Connection
Name

Specify the Web Service
Connection name.

Input

false

timeout

Timeout

Specifies the timeout time
(in seconds) for the
specified script.

300

Input

false

inN

Input(N)

Specifies an argument to be
passed to the script.

Input

false

standardOut
put

Standard
output

Outputs the standard output
of the specified script as a
character string

Output

false

standardErro
rOutput

Standard
error output

Outputs the standard error
output of the specified script
as a character string

Output

false

outN

Output(N)

Outputs the value specified
for the argument of the
"outN" function in the
specified script

Output

false

Appendix B: Description of built-in plug-ins

Hitachi Ops Center Automator Service Builder User Guide

261

Python Plug-in

Property
key

Property
name

Description

Default
value

/10
type

Required

N: An integer in the range from 0 to 9

You specify the plug-in input/output properties in the property list. Combinations of service
property values, reserved property values, and literal characters can be used for the input

properties.

Variables and functions that can be used in the script

The following variables and functions can be used in the script.

beginning of the string.

Category Name Description
Variable inN The value specified for the input property (inN) is set. The
value is interpreted as a character string even if the value
is specified as an array or in JSON format.
Function outN (String The value passed as the argument of the function is
Value) output to the component output property (outh).
Function log (String You can output any strings to the tasklog. In this case,
Value) choose a log level by adding a specific prefix to the

Prefix

[Severe]

Outputs as log level
0

[Information]

Outputs as log level
10

[Fine] Outputs as log level
20

[Finer] Outputs as log level
30

[Debug] Outputs as log level
40

(No prefix) Same as the prefix

[Information]

N: An integer in the range from 0 to 9

Appendix B: Description of built-in plug-ins

Hitachi Ops Center Automator Service Builder User Guide

262

Python Plu

Note that if the following import lines defined by default are deleted from the script, the

variables and functions mentioned previously cannot be used.

from dnaplugin import in0O, inl, in2, in3, in4, in5, in6, in7, in8, in9

from dnaplugin import outO, outl, out2, out3, outd4, outb5, out6, out7, out8, out9

from dnaplugin import log

Environment variables that can be referenced from the script

Specify a value for the environment variables when executing the script. You can get the
values for the following environment variables in the os.environ.get(key-name) or

os.environ[key-name] format.

g-in

Environment variable

Description

Format

PLUGIN_PROPERTIES

Property for the Python plug-
in

JSON format

{property-name:value, ...}

SERVICE_TEMPLATE_ID

ID of the service template to
which the Python plug-in
belongs

Numerical value

SERVICE_ID

ID of the service running the
Python plug-in

Numerical value

SERVICE_TEMPLATE

Information about the service
template to which the Python
plug-in belongs

JSON format

{service-template-
attribute:value, ...}

SERVICE

Information about the service
running the Python Plug-in

JSON format

{service-attribute:value, ...}

STORAGE_PROFILES

Information about the
Storage Profile

JSON format

[{ StorageProfile-
attribute:value, ... }, ...]

WEB_SERVICE_CONNECT
IONS

Settings information for the
Web Service Connection.
This corresponds to the
specified input properties
("Web Service Connection
Category" and "Web Service
Connection Name") seen in
the following table.

JSON format

[{ WebServiceConnection-
attribute:value, ... }, ...]

Appendix B: Description of built-in plug-ins

Hitachi Ops Center Automator Service Builder User Guide

263

Python Plug-in

Input properties

Web Service Connection
Category

Web Service Connection
Name

Reference information

Value is specified. (Y)

Value is specified. (Y)

Web Service Connection
information that coincides
with the specified Category
and Name

Value is specified. (Y)

Value is not specified. (N)

Web Service Connection
information that coincides
with the specified Category

Value is not specified. (N)

Value is specified. (Y)

None

Value is not specified. (N)

Value is not specified. (N)

None

Sample code (scriptBody/importedScript)

The following examples show the sample code of the Python Plug-in that can be specified in
the plug-in property scriptBody/importedScript:

—-*- coding: utf-8 —-*-
import os

from dnaplugin
from dnaplugin

from dnaplugin import log

import out0, outl, out2, out3, out4,

from dnaplugin imported script import *

hoge (CNST)

from dnaplugin import log

def hoge(a):

log(a + ' from common py!"')

Appendix B: Description of built-in plug-ins

import in0O, inl, in2, in3, in4, in5, in6, in7, in8, in9

out5, out6, out7, out8, out?

Hitachi Ops Center Automator Service Builder User Guide

264

Web Client Plug-in

Web Client Plug-in

The Web Client Plug-in sends and receives HTTP request and response messages. When
requested, it accesses the server by using a proxy and completes server and proxy
authentication.

Function

This plug-in sends and receives HT TP request and response messages and consists of the
following functions:

= Supports HTTP/HTTPS 1.1.

* Generates an HTTP request message based on the input properties and receives HTTP
response messages as output properties.

The following table shows the relationships between HTTP request messages and their
corresponding input properties.

Element Input Property
Request line Method requestMethod
URI requestUrl
HTTP/version -
Header requestHeaders
Body requestBody

The following table shows the relationships between HTTP response messages and their
corresponding output properties.

Element Output Property
Status line HTTP/version -
Status code responseStatusCode
Status message responseStatusMessage
Header responseHeaders
Body responseBody

Appendix B: Description of built-in plug-ins

Hitachi Ops Center Automator Service Builder User Guide 265

Web Client Plug-in

Prerequisites

* To use HTTPS communication, import the destination server certificate or a root certificate
that authenticates the server certificate in JRE truststore on the client (Ops Center
Automator installation server).

Return codes

The Web Client Plug-in generates the following return codes:

Return Code Description

0 Ended normally.

1 A status code other than Success is returned for an HTTP response
message.

70 Failed to connect to the remote host.

77 Failed to resolve the host name for the remote host.

80 Task execution has stopped.

86 An incorrect property value has been specified.

90 A data transmission failure occurred after the connection was
established.

91 The size of the HTTP response message exceeds the upper limit
value of the system.

127 Another unspecified type of error has occurred.

Property list

The properties available for the Web Client Plug-in. See details in Table 12 Relationship
between the value of the Web Service Connection and the input value of the Web Client
Plug-in (on page 272)

Property key Property name Description 1/0 type
webServiceConnectionC | Web Service When referring to the Input
ategory Connection information of Web Service

Category Connection and using it as an

input value of Web Client Plug-
in, specify the category of Web
Service Connection.

Appendix B: Description of built-in plug-ins

Hitachi Ops Center Automator Service Builder User Guide 266

Web Client Plug-in

Property key

Property name

Description

1/0 type

webServiceConnectionN
ame

Web Service
Connection
Name

When referring to the
information of Web Service
Connection and using it as an
input value of Web Client Plug-
in, specify the name of Web
Service Connection.

Input

requestMethod R

Method

Specify the HTTP method as
follows:

* GET

= POST

= PUT

= DELETE

The default value is GET.

Input

requestUrl R

Request URL

Specify the resource URL to
which the HTTP request is
sent, and a query parameter.
The URL-encoded value
specified as the input property
value is used as is. See Table
12 Relationship between the
value of the Web Service
Connection and the input value
of the Web Client Plug-in (on
page 272) for more details.

Input

requestHeaders

Request
Headers

Specify the HTTP request
header in raw format. Use the
Content-Type header and the
charset parameter to specify
the request body format and
character set.

Input

requestBody

Request Body

Specify the HTTP request
body in the raw format. Use
the format specified in the
Content-Type header.

Input

webAuth R

Server
Authentication
Scheme

Specify the server
authentication type:

* none -- No authentication

* basic -- Basic
authentication

Input

Appendix B: Description of built-in plug-ins

Hitachi Ops Center Automator Service Builder User Guide

267

Web Client Plug-in

Property key

Property name

Description

1/0 type

= digest -- Digest
authentication

* negotiate -- Negotiate
authentication

Specify "none" for the
authentication header in
requestHeaders.

webUsername

Server
Authentication
Username

Specify the user name used for
server authentication, using a
maximum of 256 characters.
Not valid when the webAuth
property key is set to none.
See Table 12 Relationship
between the value of the Web
Service Connection and the
input value of the Web Client
Plug-in (on page 272) for more
details.

Input

webPassword

Server
Authentication
Password

Specify the password used for
server authentication, using a
maximum of 256 characters.
Not valid when the webAuth
property key is set to none.
See Table 12 Relationship
between the value of the Web
Service Connection and the
input value of the Web Client
Plug-in (on page 272) for more
details.

Input

useProxy R

Use Proxy
Server

Set this to true when a proxy
connection is required. See
Table 12 Relationship between
the value of the Web Service
Connection and the input value
of the Web Client Plug-in (on
page 272) for more details.

The default value is false.

Input

Appendix B: Description of built-in plug-ins

Hitachi Ops Center Automator Service Builder User Guide

268

Web Client Plug-in

Property key

Property name

Description

1/0 type

proxyHostname

Proxy Hostname

Specify the proxy host name or
IP address, using a maximum
of 256 characters. Not valid
when the useProxy property
key is set to false. See Table
12 Relationship between the
value of the Web Service
Connection and the input value
of the Web Client Plug-in (on
page 272) for more details.

Input

proxyPort

Proxy Port
Number

Specify the proxy port number,
using 1-65535. Not valid when
the useProxy property key is
set to false. See Table 12
Relationship between the
value of the Web Service
Connection and the input value
of the Web Client Plug-in (on
page 272) for more details.

The default value is 8080.

Input

proxyAuth R

Proxy Server
Authentication
Scheme

Specifies the proxy

authentication type. The
following authentication
functions are supported:

= none -- No authentication

= basic -- Basic
authentication

* digest -- Digest
authentication

Specify "none" for the
authentication header in
requestHeaders.

See Table 12 Relationship
between the value of the Web
Service Connection and the
input value of the Web Client
Plug-in (on page 272) for more
details.

The default value is none.

Input

Appendix B: Description of built-in plug-ins

Hitachi Ops Center Automator Service Builder User Guide

269

Web Client Plug-in

Property key

Property name

Description

1/0 type

proxyUsername

Proxy Username

Specify the user name used for
proxy authentication, using a
maximum of 256 characters.
Not valid when the useProxy
property key is set to false or
the proxyAuth property key is
set to none. See Table 12
Relationship between the
value of the Web Service
Connection and the input value
of the Web Client Plug-in (on
page 272) for more details.

Input

proxyPassword

Proxy Password

Specify the password used for
proxy authentication, using a
maximum of 256 characters.
Not valid when the useProxy
property key is set to false or
the proxyAuth property key is
set to none. See Table 12
Relationship between the
value of the Web Service
Connection and the input value
of the Web Client Plug-in (on
page 272) for more details.

Input

responseStatusCode

Status Code

Outputs the status code of the
HTTP response message.
When "3xx Redirect" is
returned, automatic tracking is
activated.

Output

responseStatusMessage

Status Message

Outputs the status message of
the HTTP response message.

Output

responseHeaders

Response
Headers

Outputs the header information
of the HTTP response
message.

Output

responseBody

Response Body

Outputs the body information
of the HTTP response
message. Make sure that the
size of responseBody does not
exceed 30 MB. If the size of
responseBody exceeds 30 MB,
the value is truncated.

Output

R: Required

Appendix B: Description of built-in plug-ins

Hitachi Ops Center Automator Service Builder User Guide

270

Web Client Plug-in

Note: When using Basic authentication, a request without authentication returns
the 401 response code and a "WWW-Authenticate:Basic" header indicating that
authentication is required. If "WWW-Authenticate:Basic" is not returned, the
authentication token with Base64-converted "Username:Password" is added to
the request header. Authentication by the preemptive method is not supported
because Digest authentication requires values such as a nonce value to be
returned from the server.

The setting value of Web Service Connection can be referred to as a value of the input
property of the Web Client Plug-in. In this case, the corresponding input property is
overwritten by the setting value of the Web Service Connection.

Whether to refer to the setting value of Web Service Connection is determined by the input
value of webServiceConnectionCategory and webServiceConnectionName.

Input Value of Input Value of
webServiceConnectionCat | webServiceConnectionNa Behavior of Web Client
egory me Plug-in

Exist Exist See the value of Web
Service Connection. If no
matching Web Service
Connection is found, it
becomes a run-time error.

Exist Not exist Error (tried to refer to Web
Service Connection, but did
not find the matching one).

Not exist Exist Error (tried to refer to Web
Service Connection, but did
not find the matching one).

Not exist Not exist Do not refer to the value of
Web Service Connection.

When referring to the setting value of WebServiceConnection, the URL (property name:
requestUrl) is assembled dynamically at the run time. As the input value of the property, you
must specify the part after "/" after the host name. The part before "/" is assembled from the
setting value of Web Service Connection. In the case of the string, where the value specified
in requestUrl does not begin with "/", it generates a run-time error.

Appendix B: Description of built-in plug-ins

Hitachi Ops Center Automator Service Builder User Guide 271

Web Client Plug-in

Example: In the case of "http://host:port/Folder/", specify "/Folder/" as the input value. The
following table shows the relationship between the value of the Web Service Connection and
the input value of the Web Client Plug-in:
Table 12 Relationship between the value of the Web Service Connection and the input
value of the Web Client Plug-in

Item of the Web Service Input Property of Web
Connection Client Plug-in Remark

IP Address/Host Name Part of requestUrl host part of "http://host:port/
Folder/"

Protocol Part of requestUrl http part of "http://host:port/
Folder/"

Port Part of requestUrl port part of "http://host:port/
Folder/"

User ID webUsername Output the message to the
task logs that overwriting the
input value if it was set.

Password webPassword Output the message to the
task log that overwriting the
input value if it was set.

Use Proxy Server useProxy -

IP Address/Host Name in proxyHostname Output the message to the

Use Proxy Server task log that overwriting the
input value if it was set.

Port in Use Proxy Server proxyPort Output the message to the
task log that overwriting the
input value if it was set.

Authentication Type in Use proxyAuth -

Proxy Server

User ID in Use Proxy Server | proxyUsername Output the message to the
task log that overwriting the
input value if it was set.

Password in Use Proxy proxyPassword Output the message to the

Server task log that overwriting the
input value if it was set.

Supported Headers

Headers are transmitted and received in their raw format. The following default headers are

supported:

Appendix B: Description of built-in plug-ins

Hitachi Ops Center Automator Service Builder User Guide 272

Web Client Plug-in

Header Value

Accept application/json

Accept-Language en

Content-Type (Only when POST or PUT is application/json
specified as the method.)

Cache-Control no-cache

Pragma no-cache

User-Agent client-software-name, version

Host destination-host-name, port-number
Connection keep-alive

The following headers have a special behavior:

Header Behavior
Charset parameter in the Content-Type Request: The body character set is
header converted by using the value specified in the

Charset parameter of the Content-Type
header. When no value is specified, it is
converted to UTF-8.

Response: The body character set is
interpreted according to the value specified
in the Charset parameter of the Content-
Type header. When a charset parameter is
not returned, it is interpreted as UTF-8.

Content-Encoding When the Content-Encoding header is
returned, the body is extended. The
following encoding formats are supported:

= gzip

= deflate

Connection timeout value settings

When dealing with any HTTP/HTTPS communication problems that might occur when
connecting to the destination, you should configure the connection timeout key value
(plugin.http.connect.timeout) so it is obvious when a problem occurs with the
connection. The connection timeout value is specified through the key name

(config user.properties)in the properties file under automation-software-
installation-folder\conf.

Appendix B: Description of built-in plug-ins

Hitachi Ops Center Automator Service Builder User Guide 273

Web Client Plug-in

Linkage with the JavaScript Plug-in

Because the Web Client Plug-in does not rewrite input and output property values, linkage
with the JavaScript Plug-in is effective when values must be rewritten. Following is an
example of linkage with the JavaScript Plug-in to extract the URL encoding and the SSO
authentication token from the server response.

URL encode seript SeriptBeody

Request URL

Create header

scrint

The following table shows the flow linkage with the JavaScript Plug-in.

Plug-in Flow Description
JavaScript Plug-in 1 Input URL entered by the user.
Script that runs URL
encoding.
Execute Runs URL encoding.
Output URL-encoded URL.
Web Client Plug-in 1 Input URL-encoded URL.

Other information entered by
the user (such as the
header).

Execute Generates and sends the
HTTP request.

Receives and analyzes the
HTTP response.

Output Outputs the HTTP response
elements (such as the
header).

JavaScript Plug-in 2 Input URL-encoded URL.

Reconfigured header.

Other information entered by
the user.

Appendix B: Description of built-in plug-ins

Hitachi Ops Center Automator Service Builder User Guide 274

Web Client Plug-in

Plug-in Flow Description

Execute Generates and sends the
HTTP request.

Receives and analyzes the
HTTP response.

Output Outputs the HTTP response
elements.

Prerequisites for using Negotiate authentication

Negotiate authentication uses Kerberos v5 authentication, which needs the following
configuration files:

File Name Description Edited by user
Kerberos configuration file Kerberos configuration in the | Required
(krb5.conf) user environment.
Login configuration file Specifies the authentication | Not required

(login.conf) technology to be used.

The following code shows that the Kerberos configuration file is in automation-software-
installation-folder\conf\plugin. Edit the code, especially the italicized characters,
as needed for the user environment.

[libdefaults] // Default value for Kerberos authentication
default realm = EXAMPLE.COM // Default realm for Kerberos authentication

udp preference limit = 1

[realms] // KDC setting for each Kerberos realm (you can define settings for multiple
realms)

EXAMPLE.COM = {

kdc = kdc.example.com // KDC host name

}

[domain realm] // Maps the Active Directory domain to the Kerberos realm
.example.com = EXAMPLE.COM
example.com = EXAMPLE.COM

Note: Realms are case-sensitive. Because uppercase letters are conventionally
used, use uppercase to specify realms (lowercase letters cannot be used).

Appendix B: Description of built-in plug-ins

Hitachi Ops Center Automator Service Builder User Guide 275

Web Client Plug-in

Note: Although Kerberos authentication uses UDP by default, it uses TCP for
lager messages. Because TGT requests that use UDP will fail to link with Active
Directory, use udp_preference_limit=1 so that TCP is used.

Login Configuration File

The following login configuration file is in automation-software-installation-
folder\conf\plugin.

com.sun.security.jgss.krb5.initiate {
com.sun.security.auth.module.Krb5LoginModule required useTicketCache=true

doNotPrompt=false refreshKrb5Config=true; // Specifies the authentication

technology and options to be used

bi

Enter the following in Common-Component-installation-folder\uCPSB11\CC\web
\containers\AutomationWebService\usrconf\usrconf.cfg so that the Kerberos
configuration file and the login configuration file are referenced.

add.jvm.arg=-Djava.security.krb5.conf=Automation/conf/plugin/krb5.conf
add.jvm.arg=-Djava.security.auth.login.config=Automation/conf/plugin/login.conf

add.jvm.arg=-Djavax.security.auth.useSubjectCredsOnly=false

Appendix B: Description of built-in plug-ins

Hitachi Ops Center Automator Service Builder User Guide 276

Appendix C: Notices

This software product includes the following redistributable software.

Notices

This product includes software developed by the Apache Software Foundation (http://www.apache.org/).

Portions of this software were developed at the National Center for Supercomputing Applications (NCSA) at the University of lllinois at Urbana-
Champaign.

This product includes software developed by the University of California, Berkeley and its contributors.

This software contains code derived from the RSA Data Security Inc. MD5 Message-Digest Algorithm, including various modifications by Spyglass Inc.,
Carnegie Mellon University, and Bell Communications Research, Inc (Bellcore).

Regular expression support is provided by the PCRE library package, which is open source software, written by Philip Hazel, and copyright by the
University of Cambridge, England. The original software is available from ftp://ftp.csx.cam.ac.uk/pub/software/programming/pcre/

1. This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit. (http://www.openssl.org/)

2. This product includes cryptographic software written by Eric Young (eay@cryptsoft.com)

3. This product includes software written by Tim Hudson (tjh@cryptsoft.com)

4. This product includes the OpenSSL Toolkit software used under OpenSSL License and Original SSLeay License. OpenSSL License and Original

SSLeay License are as follow:

LICENSE ISSUES

The OpenSSL toolkit stays under a double license, i.e. both the conditions of
the OpenSSL License and the original SSLeay license apply to the toolkit.

See below for the actual license texts.

OpenSSL License

I
* Copyright (c) 1998-2019 The OpenSSL Project. All rights reserved.

* Redistribution and use in source and binary forms, with or without

* modification, are permitted provided that the following conditions

* are met:

* 1. Redistributions of source code must retain the above copyright

* notice, this list of conditions and the following disclaimer.

* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in

* the documentation and/or other materials provided with the

* distribution.

* 3. All advertising materials mentioning features or use of this

* software must display the following acknowledgment:

Appendix C: Notices

Hitachi Ops Center Automator Service Builder User Guide 277

* "This product includes software developed by the OpenSSL Project

* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"

* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to

* endorse or promote products derived from this software without

* prior written permission. For written permission, please contact

* openssl-core@openssl.org.

* 5. Products derived from this software may not be called "OpenSSL"

* nor may "OpenSSL" appear in their names without prior written

* permission of the OpenSSL Project.

* 6. Redistributions of any form whatsoever must retain the following

* acknowledgment:

* "This product includes software developed by the OpenSSL Project

* for use in the OpenSSL Toolkit (http://www.openssl.org/)"

* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT “AS IS" AND ANY

* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
*ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,

* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
*NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;

* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)

* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.

*

*

* This product includes cryptographic software written by Eric Young
* (eay@cryptsoft.com). This product includes software written by Tim
* Hudson (tjh@cryptsoft.com).

*/

Original SSLeay License

/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)

* All rights reserved.

* This package is an SSL implementation written

* by Eric Young (eay@cryptsoft.com).

* The implementation was written so as to conform with Netscapes SSL.
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions

* apply to all code found in this distribution, be it the RC4, RSA,

* Inash, DES, etc., code; not just the SSL code. The SSL documentation

* included with this distribution is covered by the same copyright terms

Appendix C: Notices

Notices

Hitachi Ops Center Automator Service Builder User Guide

278

Notices

* except that the holder is Tim Hudson (tjh@cryptsoft.com).

* Copyright remains Eric Young's, and as such any Copyright notices in

* the code are not to be removed.

* If this package is used in a product, Eric Young should be given attribution

* as the author of the parts of the library used.

* This can be in the form of a textual message at program startup or

* in documentation (online or textual) provided with the package.

* Redistribution and use in source and binary forms, with or without

* modification, are permitted provided that the following conditions

* are met:

* 1. Redistributions of source code must retain the copyright

* notice, this list of conditions and the following disclaimer.

* 2. Redistributions in binary form must reproduce the above copyright

* notice, this list of conditions and the following disclaimer in the

* documentation and/or other materials provided with the distribution.

* 3. All advertising materials mentioning features or use of this software

* must display the following acknowledgement:

* "This product includes cryptographic software written by

* Eric Young (eay@cryptsoft.com)"

* The word 'cryptographic' can be left out if the rouines from the library

* being used are not cryptographic related :-).

* 4. If you include any Windows specific code (or a derivative thereof) from

* the apps directory (application code) you must include an acknowledgement:

* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"

* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG AS IS" AND

* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF

* SUCH DAMAGE.

* The licence and distribution terms for any publically available version or

* derivative of this code cannot be changed. i.e. this code cannot simply be

* copied and put under another distribution licence

* [including the GNU Public Licence.]

*/

Oracle and Java are registered trademarks of Oracle and/or its affiliates.

This product includes software developed by IAIK of Graz University of Technology.
This product includes software developed by Daisuke Okajima and Kohsuke Kawaguchi (http://relaxngcc.sf.net/).

This product includes software developed by the Java Apache Project for use in the Apache JServ servlet engine project (http://java.apache.org/).
This product includes software developed by Andy Clark.

Java is a registered trademark of Oracle and/or its affiliates.

Appendix C: Notices

Hitachi Ops Center Automator Service Builder User Guide 279

Notices

¢ ¢
Slava = Java

ENTERPRISE
EDITION

Other company and product names mentioned in this document may be the trademarks of their respective owners.

Appendix C: Notices

Hitachi Ops Center Automator Service Builder User Guide 280

Index

A

Abnormal End Plug-in 226
add email

service template 80
Automation Director 11, 13, 16, 23—-26, 28-30, 33, 35,
83, 103, 123, 125, 128, 131, 134, 135, 139, 141, 153,
166, 171, 174, 184, 200, 212, 213, 215, 216, 220, 226,
227,231, 234, 248, 260, 265
Automator 11, 13, 16, 23—-26, 28-30, 33, 35, 83, 103,
123, 125, 128, 131, 134, 135, 139, 141, 153, 166, 171,
174,184, 200, 212, 213, 215, 216, 220, 226, 227, 231,
234, 248, 260, 265

B

basic 134

Branch by Property Value Plug-in 227

Branch by Return Code Plug-in 216

Build operation 104

building 103

built-in 131, 134, 141, 153, 166, 171, 174, 184, 200, 212,
213, 215, 216, 220, 226, 227, 231, 234, 248, 260

Built-in Plug-in Parameters 141

c

Character Set Auto Judgment 139

conditional branch
Plug-ins 29, 30, 33, 83, 88, 89, 93, 95, 96, 99, 102,
134, 135, 141, 153, 166, 171, 174, 184, 200, 212,
213, 215, 216, 220, 226, 227, 231, 234, 248, 260,
265

conditional branch in flow 48

configuration type

creating a service template
edit service template attributes, dialog box 123
creating new
plug-ins 84
service template, example 78
creating plug-ins 83, 84
creating the flow 38
custom 83

D

data map
component version management, dialog box 129
create property group, dialog box 125
create step dialog box 40
edit domain type definition dialog box 69
edit property group, dialog box 128
import service template package, dialog box 26
debug
service template 80
Debugger
Controlling the display of tasks 115
Controlling the processing flow of debug task 114
edit step property, dialog box 117
editing service and request entries 109
Examining debug details 113
Exporting property values 118
Handling interruptions of debug tasks 114
Importing properties files 117
Perform Debugging, dialog box 108
running 106
Verifying property mapping 116
Working with the debugger 110
debugging

release 121 managing tasks 113
Configuration type Debugging and releasing
debug 104 workflow 103
copy deleting 33
service template 79
Copying 29 E
create service template 35 editing 30
Index

Hitachi Ops Center Automator Service Builder User Guide

281

email notification plug-in 171
environment variables 83
Environment variables 95
example

creating a new service template 78
export property values 103

F

File Export Plug-in 231
File-Transfer Plug-in 153
filters 83

Flow Plug-in 213

G

General Command Plug-in 141

generate email 83

generating an email
Plug-ins 29, 30, 33, 83, 88, 89, 93, 95, 96, 99, 102,
134, 135, 141, 153, 166, 171, 174, 184, 200, 212,
213, 215, 216, 220, 226, 227, 231, 234, 248, 260,
265

Getting started tips 21

import 103
input properties
plug-ins 84
Input properties
in plug-ins 89
Intended audience 7
Interval Plug-in 215

J

JavaScript Plug-in 234

JavaScript Plug-in for Configuration Manager REST API
248

Judgment level 39

L

language setting 139
lists 134

managing
debuggins tasks 113

(0]

Ops Center 11, 13, 16, 23-26, 28-30, 33, 35, 83, 103,
123, 125, 128, 131, 134, 135, 139, 141, 153, 166, 171,
174,184, 200, 212, 213, 215, 216, 220, 226, 227, 231,
234, 248, 260, 265
Ops Center Automator 10.8.3 11, 13, 16, 23-26, 28-30,
33, 35, 83, 103, 123, 125, 128, 131, 134, 135, 139, 141,
153, 166, 171, 174, 184, 200, 212, 213, 215, 216, 220,
226, 227, 231, 234, 248, 260, 265
Output filters
Plug-ins 29, 30, 33, 83, 88, 89, 93, 95, 96, 99, 102,
134, 135, 141, 153, 166, 171, 174, 184, 200, 212,
213, 215, 216, 220, 226, 227, 231, 234, 248, 260,
265
output properties
plug-ins 84
Output properties
in plug-ins 93

P

plug-in
create plug-in, dialog box 84
plug-in mapping
specify component input properties for mapping
parameters, dialog box 44
plug-ins
create environment variable, dialog box 96
create input property for custom plug-in, dialog box
89
create output property for plug-in, dialog box 93
edit output filter, dialog box 99
specify execution condition, dialog box 49
Plug-ins
built-in 265
creation workflow 83
input properties 89
managing 29
output properties 93
properties 88
remote commands 95
Web Client Plug-in 265
product version 7
properties 83
property mapping 103
property settings 35
Python Plug-in 260

R

release

Index

Hitachi Ops Center Automator Service Builder User Guide 282

release (continued)
service template 80
release operation 121
releasing 103
remote commands 83
Repeated Execution Plug-in 166
reserved 135

S

service builder
ul 21
service template
create service template, dialog box 37
Service template
managing 23
overview 22
service templates
releasing 121
Service templates
adding input properties 56
adding output properties 74
adding variables 76
build result, dialog box 105
Creating a flow hierarchy 46
creating a new service template 37
creating the steps 39
creation workflow 35
Establishing the flow of execution 45
selecting the service share properties 53
step properties 42
testing 104
step flow 35

T

Terminal Command Plug-in 200
Terminal Connect Plug-in 184
Terminal Disconnect Plug-in 212
test

service template 80
Test Value Plug-in 220

u

Ul settings
create input property for service, dialog box 56
create output property for service, dialog box 74
create variable, dialog box 77
select reference property, dialog box 54
select service share property, dialog box 53
User Response Wait Plug-in 174

Index

Hitachi Ops Center Automator Service Builder User Guide

283

Hitachi Vantara

000

Corporate Headquarters
2535 Augustine Drive
Santa Clara, CA 95054 USA

HitachiVantara.com | community.HitachiVantara.com

Contact Information
USA: 1-800-446-0744
Global: 1-858-547-4526

HitachiVantara.com/contact

https://www.linkedin.com/company/hitachi-vantara
https://twitter.com/hitachivantara
https://www.facebook.com/HitachiVantara
https://www.youtube.com/user/HDScorp

	Hitachi Ops Center Automator Service Builder User Guide
	Contents
	Preface
	Intended audience
	Product version
	Release notes
	Referenced documents
	Document conventions
	Conventions for storage capacity values
	Accessing product documentation
	Getting help
	Comments

	Overview of Automator Service Builder
	About Service Builder
	Terms and concepts
	Access Service Builder
	Navigate the interface
	Getting started tips

	Working with existing service templates
	Service template overview
	Manage existing service templates
	Viewing a service template
	Copying a service template
	Copy Service Template dialog box
	Editing a service template
	Deleting a service template
	Importing a service template
	Import Service Template Package dialog box
	Exporting a service template

	Working with existing plug-ins
	Plug-ins overview
	Custom Plug-in List dialog box
	Manage existing plug-ins
	Copying a plug-in
	Editing a plug-in
	Copy Custom Plug-in dialog box
	Deleting a plug-in

	Creating a new service template
	Service template creation workflow
	Creating a new service template
	Create Service Template dialog box
	Specify the step flow
	Creating the steps in a data flow
	Create/Edit Step dialog box
	Specifying step properties
	Specify Component Input/Output Property Mapping Parameters dialog box
	Establishing the flow of execution
	Creating a flow hierarchy
	Creating a Next Step conditional branch in a flow
	Specify Execution Condition dialog box

	Specify the property settings
	Selecting the service share properties
	Select Service Share Property dialog box
	Select Reference Property dialog box
	Adding input properties
	Create/Edit Input Property for Service dialog box
	Create/Edit Domain Type Definition dialog box
	Adding output properties
	Create/Edit Output Property for Service dialog box
	Adding variables
	Create/Edit Variable dialog box

	Example of creating a new service template
	Making a copy of an existing service template
	Adding email notification for the service template
	Debugging, building, testing, and releasing the new service template

	Creating a new plug-in
	Plug-in creation workflow
	Creating a plug-in
	Create/Edit Custom Plug-in dialog box
	About plug-in properties
	Add plug-in input properties
	Specify/Edit Input Property for Custom Plug-in dialog box
	Adding plug-in output properties
	Specify/Edit Output Property for Custom Plug-in dialog box
	Setting remote commands in plug-ins
	Setting environment variables
	Create/Edit Environment Variable dialog box
	Adding output filters
	Edit Output Filter dialog box
	Creating a conditional branch using the branching plug-ins
	Generating an email

	Building, debugging and releasing
	Debug and release workflow
	Building a service template
	Build / Release Result dialog box
	Running the debugger
	Perform Debugging dialog box
	Editing service and request entries while debugging
	Working with the debugger
	Examining debug details
	Managing tasks during debugging
	Controlling the processing flow of debug tasks
	Handling interruptions of debug tasks
	Controlling the display of tasks in the task list

	Verifying the property mapping of a plug-in
	Edit Step Property dialog box
	Importing property values
	Exporting property values
	Releasing a service template

	Advanced options
	Editing the service template attributes
	Edit Service Template Attributes dialog box
	Creating property groups
	Create Property Group dialog box
	Edit Property Group dialog box

	Managing versions
	Component Version Management dialog box

	Reference information
	List of built-in service templates
	List of built-in plug-ins
	List of reserved properties
	Locale settings for plug-ins

	Description of built-in plug-ins
	General Command Plug-in
	File-Transfer Plug-in
	Repeated Execution Plug-in
	Email Notification Plug-in
	User-Response Wait Plug-in
	Terminal Connect Plug-in
	Terminal Command Plug-in
	Terminal Disconnect Plug-in
	Flow Plug-in
	Interval Plug-in
	Branch by ReturnCode Plug-in
	Test Value Plug-in
	Abnormal-End Plug-in
	Branch by Property Value Plug-in
	File Export Plug-in
	JavaScript Plug-in
	JavaScript Plug-in for Configuration Manager REST API
	Python Plug-in
	Web Client Plug-in

	Notices
	Notices

	Index

